Effectiveness of conservation measures for the European eel

Bevacqua D., P. Melià, A. Crivelli,G. De Leo and M. Gatto

The demographic model
The management scenarios
Results and Conclusions

Introduction:

Dramatic situation
Catches and recruitment collapse

Agreement on the collapse...less on the causes:
climate change, pollution, diseases and parasites, habitat loss, overexploitation ...

Introduction:

EU actions

- EU Water Framework Directive (2000/ 60/ EC)

■ European recovery plan for the eels (COM 2005, 472 final)
-Long term target: "a recovery of the stock"
-Short term target: " 40% of the biomass of spawners relative to the best estimate in the absence of human activities"
-Short term effective measures: fishing effort reduction
-Long term effective measures: implementation of basin management plan approved by STEFC
(Scientific, Technical and Economic Committee for Fisheries)

Introduction:
 Objectives of present work

- To estimate both spawner output and fishermen harvest under different management scenarios in the Camargue lagoons
- To perform a Pareto analysis of alternative strategies

By using a sex, size and age-structured model (De Leo \& Gatto, 1995 C FAS)

- updated with recent surveys (Melià et al., 2006JFB)
- adapted to the Camargue lagoons (Bevacqua et al., 2006 JFB)

Introduction:

Camargue lagoons

General info

- 11.000 hectares
- 16 fishermen
- Fyke nets
- Yellow and silver fishery

■ Potential spawner output magnitude ?
■ Does traditional management guarantee a 40\% escapement?
If not, what needs to be done?

Introduction

- (he dex iocrapht modilel

The management scenarios Results and Conclusions

The demographic model: Main features

Structure

- sex, age and length structured
- monthly time step

Biological and management aspects

- annual variable recruitment
- specific growth process for undiff., males and females (Melià et al.,2006 JFB)
- sexual maturation dep. upon length and sex (Bevacqua et al.,2006 JFB)
- juvenile mortality dep. upon density
- adult mortality dep. upon age and season (De Leo \& Gatto, 1995 CJFAS)
- fishing mortality dep. upon fishing effort and mesh size (De Leo \& Gatto, 1995 CJFAS)

The demographic model:
 Main features (life history traits)

Seexuallidifferotitiationtlaex ratio 1.56)

The demographic model:

Main features (life history traits) (decision variables)

Glass eel: pathrieg rititrtesitytocking

Introduction

The demagraphic model

- The managememeseaianios

Results and Conclusions

The management scenarios:

Recruitment (annual)

Historical data (1993-2003) have been used to estimate a not linear relationship between annual glass eel cpue and elver recruitment:

How large will be the next years glass eel cpue?

Glass eel CPUE \longrightarrow Recruitment	
median $=1,7$	958.000
low $=0,17$	106.000
high $=17$	4.880 .000

The management scenarios:

Fishing mortality rate (F)

$M(t, l, m)=q \times E(t) \times \varphi(m, l)$ from De Leo \& Gatto, 1995 CJFAS

- q catchability coefficient
- $E(t)$ monthly effort (\# nets per month)

- $\varphi(I)$ mesh selectivity

$$
\varphi(l)=\frac{1}{1+\mathrm{e}^{\left(\frac{\Phi_{\text {med }}-\rho^{-1} \mathrm{e}^{\alpha} l^{\beta-1}}{v}\right)}}
$$

The management scenarios:

Management scenarios

3 recruitment levels:

- low
- historical
- high

6 fishing efforts:

- no exploitation
- historical
- halved
- summer closure
- autumn closure
- winter closure

10 mesh sizes:

- 6 mm
- 8 mm
- 10 mm
-....
- 24 mm

$$
3 \times 6 \times 10=180
$$

For each scenario we run the model from 2003 to 2010 and estimated:

- annual spawner output biomass (F and M+F)
- annual fishermen harvest

Pareto approach :
a scenario is dominated if exists at least another feasible scenario ensuring both a higher harvest and a higher spawner output

Ifacteverfincernocendicition

Introduction
The demographic model
The management scenarios

- Results and Conclusions:

Results and conclusions

Multi-objective analysis
Maximize spawner output (conservation objective)
Maximize fishermen harvest (socio - economic objective)
potential conflict

Results and conclusions:

The separate role of mesh size and fishing effort (historical recruitment scenario)

Spawner output

- 40\% of the unexploited scenario equals 25 tons
- BAU does not guarantee 25 tons
- present effort scenario needs a 16 mm mesh size
- halving the effort alone could guarantee the 40%
- many intermediate and effective options

Harvest

- present harvest is inefficient
- 12-14 mm mesh size turns out to be optimal for all the analyzed scenarios

Results and conclusions:

Conclusions:

- Present management is inefficient (fishermen dilemma? alternative hypotheses?)
- Measures on mesh size and fishing effort can improve fishermen harvest and guarantee a 40\% of SSB
- Several optimal scenario exists (last word to policy makers)
- Any policy gives results after 5-7 years (eel life span in Mediterranean regions)
- Our results are site-specific (lagoon context)
- 40% of what? (males plus females; pristine conditions)

Further improvements

- Consider costs and revenues
- Consider density-dependent effects on body growth, mortality rates and sex ratic -Apply this approach to other populations

Dipartimento di Scienze Ambientali Università degli studi di Parma, Italy

Dipartimento di Elettronica e Informazione

 Politecnico di Milano, ItalyStation Biologique de la Toutr du Valat, Le Sambuc, Arles, France

Contacts : bevacqua@dsa.unipr.it

