Discard Atlas of North Sea fisheries

Version: 22/1/2014

Discard Atlas of North Sea fisheries

Editor

Martin Pastoors, IMARES, The Netherlands

Contributors

Alexander Kempf	Germany	Karin Linderholm	Sweden
Ana Ribeiro Santos	England	Lianne Kersbergen	Netherlands
Ashley Wilson	England	Louise Cunningham	Scotland
Bart Maertens	Belgium	Marc Welvaert	Belgium
Bart Vanelsander	Belgium	Martin Andersen	Denmark
Bent Pallisgaard	Denmark	Matthieu Reuvanot	France
Björn Åsgård	Sweden	Nick Bailey	Scotland
Clara Ulrich	Denmark	Nuala Carson	England
Daniel Valentinsson	Sweden	Paul McCarty	Scotland
Eche Puig	France	Sebastian Uhlmann	Netherlands
Els Torreele	Belgium	Simon Maximilien	France
Henk Offringa	Netherlands	Uffe Sveistrup	Denmark
Jorgen Dalskov	Denmark	Youen Vermard	France
Jürgen Weis	Germany		

Observers

Barrie Deas	NSRAC
Kenn Skau Fischer	NSRAC

Colofon

The Discard Atlas of North Sea fisheries is a publication of the Scheveningen Group. [reference, website]

Table of Contents

E	ecutive	e summary	8					
1	Intro	oduction	. 13					
2	Mat	erial and methods for quantifying discards	. 14					
	2.1	General description of areas and fisheries	. 14					
	2.2	General description of national sampling programmes for discards	. 20					
	2.3	Description of the data sources for the discard atlas	. 21					
	2.4	Limitations and known issues with the catch database used.	. 23					
3	Land	dings and discard estimates by area and fishery	. 26					
	3.1	Area IV (North Sea)	. 27					
	3.2	Area IIIa (Skagerrak)	. 38					
	3.3	Area VIId (Eastern Channel)	. 45					
4	Mar	nagement measures to mitigate discards	. 47					
	4.1	Generic measures to manage discards	. 47					
	4.2	Drivers and incentives for discarding	. 49					
	4.3	Cod avoidance measures	. 51					
	4.4	Effectiveness of cod avoidance measures	. 55					
	4.5	New technical measures, trials and other developments	. 57					
	4.6	Other possible measures	. 58					
5	Disc	ussion	. 58					
6	Refe	erences	. 59					
A	nnex 1	Quota management around the North Sea	. 61					
A	Annex 2 Differences between ICES and STECF discard raising for the North Sea							
A	nnex 3	Detailed landing and discard tables by species, country and gear	. 68					

Figures

Figure 2.1-1 North Sea overview14
Figure 2.1-2 Distribution of North Sea, Skagerrak and Eastern Channel international fishing effort (EU) in
hours fishing by ICES statistical rectangle. Figures shown for 3 trawl gears TR1, TR2 and TR3 and for two
beam trawls BT1 and BT2. Note: a) that within each plot the darker the shading, the higher the effort;
b) that the scales are different between the plots and so the plots should not be used to infer relative
magnitude of effort between gears, but rather for examining distribution of effort
Figure 2.1-3 Distribution of North Sea, Skagerrak and Eastern Channel international fishing effort (EU) in
hours fishing by ICES statistical rectangle. Figures shown for gillnets GN1, trammel nets GT1 and long
lines LL1. Note: a) that within each plot the darker the shading, the higher the effort; b) that the scales
are different between the plots and so the plots should not be used to infer relative magnitude of effort
between gears, but rather for examining distribution of effort
Figure 2.3-1 Schematic overview over the discard raising procedure used in the STECF database

Tables

Table 2.4-1 Overview of species in the categories "demersal" and "pelagic/industrial"
Table 3.1-1 North Sea demersal fisheries: landings and discards per species and year and area; table
sorted in descending order on average catch 2010-2012
Table 3.1-2 North Sea demersal fisheries: Quota by species, country and year
Table 3.1-3 North Sea demersal fisheries: landings and discards per species, country and year; table sorted
in descending order on average catch 2010-2012, top 10 species, top 5 countries per species
Table 3.1-4 North Sea demersal fisheries: landings and discards per country, species and year; table sorted
in descending order on average catch 2010-2012, top 5 species per country
Table 3.1-5 North Sea demersal fisheries: landings and discards per gear, species and year; table sorted in
descending order on average catch 2010-2012, top 10 species per gear
Table 3.1-6 North Sea pelagic and industrial fisheries: landings and discards per species and year and area.
Table sorted in descending order on average catch 2010-2012
Table 3.1-7 North Sea pelagic and industrial fisheries: Quota by species, area and country for 2010, 2011
and 2012. country and year. Source: FIDES. Extraction: 19/11/2013
Table 3.2-1 Skagerrak demersal fisheries: landings and discards per species and year and area. Table
sorted in descending order on average catch 2010-2012
Table 3.2-2 Skagerrak demersal fisheries: landings and discards per species, country and year. Table sorted
in descending order on average catch 2010-2012, top 10 species
Table 3.2-3 Skagerrak demersal fisheries: landings and discards per country, species and year. Table sorted
in descending order on average catch 2010-2012, top 4 countries and top 6 species per country
Table 3.2-4 Skagerrak demersal fisheries: landings and discards per gear, species and year. Table sorted in
descending order on average catch 2010-2012, top 10 species per gear
Table 3.2-5 Skagerrak pelagic and industrial fisheries: landings and discards per species and year and area.
Table sorted in descending order on average catch 2010-2012
Table 3.3-1 Eastern Channel demersal fisheries: landings and discards per species and year and area, table
sorted in descending order on average catch 2010-2012
Table 3.3-2 Eastern Channel pelagic fisheries: landings and discards per species and year and area46
Table 4.3-1 Overview of Cod Avoidance Measures by Member State (excerpt from May 2013 EU-Norwegian
working group report and updated in September 2013)52
Table 4.5-1 New technical measures, trials and other developments

Executive summary

With the agreement on the reform of the Common Fisheries Policy in May 2013, the issue of discards in European fisheries has acquired a new dimension. Article 14 of the new basic regulation stipulates that "*Member States may produce a "discard atlas" showing the level of discards in each of the fisheries covered by the landing obligation*". The Scheveningen Group is a group of Member States around the North Sea. The Scheveningen Group has taken up the invitation to develop a discard atlas for the North Sea. The ambition is both to document the current knowledge of how much discards are actually generated in the North Sea and to assemble information on the strategies to mitigate discards. The information presented in this discard atlas has been compiled by a joint "discard atlas working group" composed of scientists and policy-makers from the Member States of the Scheveningen Group.

The results presented in this discard atlas are based on the official STECF database which holds information on landings and discards. Quantities of landings are derived from the national fisheries statistics which are recorded according to the control regulation (Council Regulation 1224/2009). These include logbook or sales slip records of the volume of landing by species and size grade per management area. Under the European Data Collection Framework, detailed biological data of the biomass, length, age, and species compositions of discards from the most important commercial fisheries are collected via national observer- or self-sampling programmes. Because the discard data are recorded from <2% of all fishing operations, they are extrapolated based on a fleet's fishing effort. Each Member State is obliged to provide these raised data for a selected number of species to the STECF as part of a detailed data call each year. However, not every Member State has the capacity to sample all relevant fisheries, so in case of missing values, fill-ins are made drawing upon available information from related fisheries. If an estimated discard total is largely derived from such filled-in data it may be less accurate and reliable than an estimate which is largely based on data. Therefore, data quality of discard estimates was assessed by calculating the proportion of the discard estimate that was derived from actual observations relative to the overall amount of discards (that also included fill-ins).

For this discard atlas, the STECF database was used to compile landings and discards data for some of the most-commonly caught species in the North Sea (STECF 2013a). Data are available from 2003 to 2012 but only data from 2010 to 2012 were used because the quality and scope of the data have improved over the years. Fisheries were defined based on target species and classified as either demersal, industrial or pelagic fisheries, and the fishing areas based on ICES Divisions (Skagerrak – ICES Division IIIa; North Sea – ICES Division IVabc; and Eastern Channel, ICES Division VIId). Discard ratios were used to express the percentage proportion of the catch that consisted of discards. To condense and compile these data into a presentable format as part of a 'discard atlas', two meetings were held upon invitation of the Dutch ministry of Economic Affairs between scientists and fisheries managers to agree on the content and format. It was agreed to present estimated totals of landings and discards (in tonnes) by year and species, country and fisheries. Based on these official STECF data, it was estimated that annual discard totals of some of the most-commonly caught species range between 140 and 220 thousand tonnes. However, the latter estimate only includes selected species and ignores largely (benthic) invertebrate species which in some fisheries contribute up to 40% of the discarded biomass in weight.

Main conclusions on the discards in different areas and fisheries are summarized in the table below

North Sea demersal fisheries	On average 40% of the catch in weight was discarded in the North Sea between 2010 and 2012 with 78% of the discards coming from plaice and dab. Average discard ratios were highly variable between species ranging from zero (e.g., megrim, blue ling) to over ninety percent (dab). The overall discard quality was 71% in 2010, 23% in 2011 and 60% in 2012. Discard quality improved for dab, cod, Norway lobster, lemon sole, turbot and anglerfish in 2012. Only for a few species (e.g., hake and sole) the discard quality decreased in 2012.
North Sea pelagic and	Discard ratios are generally low for the nelagic fisheries and next to zero for
industrial fisherios	industrial fisheries. However, no specific observer programmes are conducted on
industrial fisheries	the pologie and industrial ficharies in the North Coo. No information on slipping is
	the pelagic and industrial insteries in the North Sea. No information on suppling is
	available but can in certain seasons and areas be substantial.
Skagerrak demersal	The average discard ratio in the Skagerrak was 23 % for the years 2010-2012.
fisheries	Discard ratios varied between species from very low percentages (i.e. anglerfish and
	turbot) to almost ninety percent (whiting). New gear regulations were introduced in
	national legislation 2013 by Denmark and Sweden, which can be expected to
	reduce the discard ratios presented here.
Skagerrak pelagic and	Discard estimates are in general uncertain. No observer programmes are conducted
industrial fisheries	on the pelagic and industrial fisheries. Slipping in pelagic fisheries is known and can
	in some season and areas be substantial.
Eastern Channel	Whiting, plaice and sole dominate the catches. Between 10-15% of dab. plaice and
demersal fisheries	lemon sole catches are being discarded. For many of the demersal species discard
	ratios varied by in some cases an order of magnitude between years. The quality of
	the discard information in the Eastern Channel is generally low. The two species
	with the highest discard ratios in the demersal fishery (whiting and plaice) are to a
	large extent reliant on fill-ins for unsampled metiers
Easter Channel pelagic	The main landings for pelagic species are herring and horse mackerel. For these
fisheries	species almost no discard information was available.

To improve mitigation strategies for some of the above discard-intensive fisheries, it is important to know the reasons for discarding. Unfortunately, these are often unknown, because they are not recorded by fishers, also because a mix of market- and regulatory conditions may influence decisions to discard. Because there are different reasons for discarding, there will also need to be different solutions to address these reasons.

Drawing upon length-based data from observer monitoring programmes, Catchpole *et al.* (2013) infer the main drivers and distinguish these four categories:

- 1. Discards of fish below the minimum landing size (MLS). The inferred driver for these discards is the mismatch between the selectivity of the fishing practices and the minimum length at which these fish can legally be landed.
- 2. Discards of fish below a minimum marketable size (MMS) or for a species that has limited market value (non-commercial species). The driver behind these discards was inferred to be a mismatch between the selectivity of fishing practice and the market demand for these fish.
- Discards of fish with no associated quota and discarded above either the MMS or the MLS. This category consists entirely of commercial species. The inferred reasons for discarding these fish included inconsistencies in market opportunities, inconsistent sorting, poor condition of the fish or damage to the fish.
- 4. Discards due to quota restrictions or catch composition rules. These discards were generated through fishers' responses to quota restrictions and catch composition restrictions forcing fishers to marketable discard fish above MLS. However, this category may also refer to highgraded, marketable fish (above MLS) which was discarded to catch even more valuable fish.

In pelagic fisheries for herring, mackerel and horse mackerel, unaccounted mortality due to "slipping" is a long-standing problem although the actual extent is largely unknown. The main reason for slipping is when catches contain large percentages of small pelagic species with low market value, although it can also be as a result of catches being mixed or for practicality reasons when there is insufficient storage space on board a vessel to accommodate the entire catch from an individual haul. Discards of pelagic species often occur in fisheries for other (pelagic) species, e.g. herring discarded in fisheries for mackerel and horse mackerel, mackerel is discarded in fisheries for horse mackerel.

For some of the most-commonly discarded species such as plaice, dab, whiting and hake in the North Sea, Skagerrak and Eastern Channel, the reasons have been summarised below.

Plaice. About half of the catches of plaice are discarded. Highest discard ratios occur in the fisheries targeting sole by Dutch, English and Belgium beam trawlers. To catch the 24cm of sole, the fishers use mesh width of 80mm mesh in the nursery area for plaice. Some 95% of the discards are below Minimum Landing Size. Whereas, beam trawlers (BT1) with 120mm mesh targeting plaice in the northern North Sea (outside the nursery area in the Southern Bight) has only very low discard ratios for this species. High fuel prices and limited days at sea, keep the beam trawls close to harbour, i.e. in the nursery area where the young fish is abundant. Prices of fish are low, but high grading does not seem to take place. It is generally assumed that the import of Pangasius and other cheap flatfish from North America have suppressed the market for North Sea plaice. High discards are observed in the German TR2 fisheries on Norway lobsters (*'Nephrops'*).

Dab. Dab is an abundant species in the Southern North Sea, in particular in the German Bight. The vast majority of the dab catches are unwanted bycatch and discarded, duet to a lack of opportunity to sell them as a consequence of their low prices. The low price is presumed not enough to land outweigh the costs of landing. Quota were initially set as precautionary TACs and are not fully utilised.

Whiting. Similarly to dab, the low price is assumed to be the most dominant reason for the discarding of whiting by fishers in the Netherlands, Belgium, Sweden and Denmark. Off the eastern English coast and in the Skagerrak, local concentrations occur, and discards may be due to a lack of quota. Whiting is an substantial bycatch in the *Nephrops* fisheries.

Hake. The northern stock is recovering and currently more abundant. Quota limitations were the main driver for discarding, but it should be noted that the quota are uplifted in autumn 2013. Hake is by-caught in cod fisheries. Swap ins of quota from other countries are difficult, because hake is valuable.

Cod. Despite recovery of the stock, discards have been reduced successfully with cod avoidance measures. Catch composition rules, in particular in TR2 are a driver for discards. Limited individual quota and high rent prices are also known factors.

Cod avoidance measures

At the December 2012 Council, a joint statement was made by the fisheries Ministers from Sweden, England, Germany, Denmark and the Netherlands to draw up and implement cod avoidance plans. An overview of cod avoidance measures by member state is presented in the report. An evaluation of the cod avoidance measures in Scotland, the Netherlands and Denmark is also presented. For example, in Scotland it seems likely that avoidance measures have contributed to the significant reduction in discard ratio of cod. This observation may encourage discussions about the utility of avoidance measures as helpful tools to reduce discards in other species and thereby meeting the landing obligations of the new CFP.

Other potential measures

An overview of new technical solutions to prevent discarding has been presented in this report. This overview describes the experiences in different Member States. Other potential measures to prevent discarding relate to quota management, spatial measures and measures for species with high survival.

Quota management measures will in most Member States be necessary to facilitate the utilisation of quota under a discard ban. They can be an important tool to avoid unwanted bycatch or to allow those to be landed, for example by means of a national reserve or pooled quotas.

Spatial measures (real time closures - RTC, seasonal closures, permanent closures), but also 'moveon' may be helpful in cases where aggregations of juvenile or spawning fish occur. Potentially also as a tool to avoid undersized fish, and therefore add to the implementation of the landing obligation.

To allow the discarding of species with high survival probability may help to improve stock status and to avoid the closure of fisheries if quotas for these species are exhausted. However, it is difficult to prove in a scientifically sound way whether and under which circumstances species have high chance to survive a capture-and-discarding process. It should be elaborated whether e.g., elasmobranchs or robust flatfish species are potential candidates for an exemption to avoid unnecessary negative effects of a discard ban on stocks and fisheries.

Results-based management

In designing discard plans, and associated relevant measures to minimise discards as well as rules of control and enforcement, objectives of the landing obligation should be considered to design a satisfactory management system. A key factor in this context is the level of compliance and the link to the level of detail of technical regulations required to achieve an effective landing obligation. In the reform of the CFP it was called for a change to a results based management, incentivising good fishing practices. Within a results based management system authorities establish the overarching objectives and quality standards for the marine environment while fishermen have flexibility concerning the operational means to achieve those targets, provided that they take responsibility to account for the catch under landing obligation. Such a system should better enable fishermen to optimise the economic outcome of available fishing opportunities.

1 Introduction

The throwing back of unwanted catches ('discarding') is an inevitable consequence of any unselective fishing practice. This seemingly resource-wasting practice is also common among commercial fisheries in the North Sea. The intention of Articles 14 and 15 of the reformed Common Fisheries Policy is to curtail discarding throughout European waters by introducing an obligation to land all catches of quota-regulated species. This landing obligation or discard ban will be applicable for both industrial, pelagic and demersal fisheries. Historically, it has been estimated that annually between 800 and 950 thousand tonnes were discarded by all active fisheries in the North Sea; which equated to 1/3 of the weight of total landings and 1/10 of biomass (Catchpole et al., 2005).

Article 14 of the new basic regulation stipulates that "*Member States may produce a 'discard atlas' showing the level of discards in each of the fisheries covered by the landing obligation*". Note that the quotation marks around the concept discard atlas are in the original text, which may mean that the contents of a discard atlas may have multiple interpretations.

The Scheveningen Group is a group of Member States around the North Sea. The Scheveningen Group has taken up the invitation to develop a discard atlas. The ambition is both to document the current knowledge of how many discards are actually generated in the North Sea and to assemble information on the strategies to mitigate discards. The current knowledge on discards in different fisheries can be used to prioritize actions and to set a reference level at the start of the new policy. Furthermore, this may allow to evaluate the performance of the new policy over the coming years.

The information presented in this discard atlas have been compiled by a joint "discard atlas working group" composed of scientists and policy-makers from the associated Member States. The working group has been convened under the auspices of the Scheveningen Group. The working group concluded that a North Sea discard atlas would need to be based on comprehensive information that would cover all major fisheries in the North Sea. In addition the data source should be publicly available and the procedures for combining information should be clearly described and reproducible. The group also concluded that the main focus should be on the compilation of information by area and its presentation in a tabular format. Therefore, this atlas is only to a (very) limited extend based on geographical information.

2 Material and methods for quantifying discards

2.1 General description of areas and fisheries

2.1.1 Physical and biological environment

The North Sea is a large sea basin containing a number of habitats and distinct regions resulting from its bathymetry, topographical features and hydrography. Information on this and on the fisheries operating in the North Sea was drawn from several sources (Paramor *et al.* 2009; ICES 2013; STECF 2013a).

Figure 2.1-1 North Sea overview

The southern North Sea and Eastern Channel are mainly shallow (< 50 m) areas with a few deeper depressions (for example the Botney Gut and Silver Pit areas). Water temperatures in these shallow, coastal waters fluctuate widely. A number of recognised environmental changes (for example the Flamborough front) occurs in the region of the 50 m depth which describes a line roughly between the Humber estuary on the East coast of England and the Northern tip of Denmark. North of this, the continental shelf waters are deeper and exceed 100 m over an extensive part of the offshore areas. Some deep holes approaching 200 m depth are also present. Sea

water temperatures in the Northern North Sea are less variable than in the South. To the North of Shetland, the 200 m shelf edge contour gives way to a slope quickly dropping away to over 1000 m. The shelf edge extends round into the North-eastern part of the North Sea along the edge of a trench, the Norwegian Deeps and into the northern part of the Skagerrak. The Southern part of the Skagerrak is shallower.

The seabed of the North Sea mainly comprises a variety of sand and mud sediments with small patches of gravel and pebbles. Fine sand predominate over wide areas giving way to soft silt clay

muds in some of the deeper areas. Areas of gravel and pebbles are most prevalent to the Southeast of England and off the Danish coast. The hydrography of the area is strongly influenced by inflow of Atlantic water to the North of Scotland and also water from the channel. Together with water draining into the North Sea from numerous large rivers, the overall nutrient input generates a productive environment supporting a number of commercially-important stocks.

2.1.2 Stocks and fisheries

The variety of habitats and environmental conditions over the area influences the range of species of fish that are present and their distributions. This in turn has given rise to the development over time of a variety of fisheries prosecuted by fleets from a number of countries using a variety of gear types. The extent to which different countries participate in the various fisheries depends to a large extent on national quotas available to them.

As an illustration, the ICES MIXFISH working group, dealing with the main assessed demersal stocks in the North Sea, Skagerrak and English Channel, defines 43 fleets segments over the various countries (9), main gear (5) and, sometimes, vessel size (up to 3). These fleets engage in one to four different métiers (defined as *mesh-size*area*, e.g. TR1 in North Sea or TR2 in Eastern Channel), resulting in 118 combinations of *country*fleet*métier*area* catching cod, haddock, whiting, saithe, plaice, sole, *Nephrops* and hake. These categories, although quite numerous already, are still fairly broad-brushed and do not account for local specificities. An even more complex description of fishing in the North Sea is therefore possible. For practical purposes however, it may be desirable to identify a smaller number of fairly distinct fisheries. This task is not a straightforward question with a unique simple scientific answer, as grouping individual fishing activities into few categories (*"fisheries"*) depends on the desired scale (sea basin, national, local) and criteria (e.g. *gear*mesh size* – e.g. TR1 vs TR2, or target species, e.g. fishery for cod vs. fishery for Norway lobster), often with unclear boundaries. Detailed considerations on this topic have been provided to the second STECF expert group on landing obligations (STECF EWG 13-17), including issues and trade-offs linked to the various alternatives for defining fisheries (STECF 2013d).

Below, an overview is presented of the main fisheries in the North Sea, subdivided by general type of gear and by subtype based on mesh size.

Fisheries using otter trawls or seines

TR1 (mesh size >=100 mm)

Figure 2.1-2a shows that the distribution of activity of TR1 gear is predominantly in the more northerly parts of the North Sea extending in a broad sweep from North of Shetland, following the shelf edge adjacent to the Norwegian Deeps and across to the Northern Danish coast. At least three different fisheries operate within this gear category.

 A mixed demersal fishery targeting cod and associated species (mainly haddock and whiting in the Western and Northern North Sea, mainly plaice in the South-eastern North Sea) with trawls and seines nets operates over much of the area described in the figure. Of particular importance are the areas off Denmark, around Shetland and adjacent to the Norwegian Deeps. The main countries involved are Scotland, Denmark and Germany.

- 2. A mixed fishery that is characterised by a greater preponderance of 'groundfish' species targeting in particular anglerfish and megrim. The main area of operation for this fishery is along the shelf edge at depths around 200 m and this fishery is particularly important in Scotland.
- 3. A fishery for saithe, mainly to the far north of the North Sea area where French, German and Norwegian vessels are the main players

In recent years, an increasing population of hake is seasonally abundant in the North Sea. Hake is regularly caught in TR1 fisheries, particularly by type 2 and 3.

TR2 (mesh size 70-100 mm)

Figure 2.1-2b shows the distribution of activity of TR2 gear. The use is more widespread than the TR1 gear and associated mainly with three fisheries.

- The fishery for Norway lobster (*Nephrops*). This species lives on areas of soft clay muds which are distributed patchily throughout the North Sea and Skagerrak. Bycatch limits for fish species apply in the smaller meshed (80-89 mm) *Nephrops* fishery. The bycatch limits do not create undue problems in inshore areas where fish abundance is low. In more northerly offshore areas where fish are more abundant, adhering to the bycatch limits is more challenging.
- 2. A mixed fishery taking place in the more southerly parts of the North Sea and centred on the eastern Channel in which whiting and non-quota species are important constituents. This is predominantly a French fishery.
- 3. A 90-99 mm mesh mixed demersal fishery centered on the Skagerrak and prosecuted by Denmark and Sweden. In the Skagerrak, also a directed *Nephrops* fishery with sorting grid (70-89 mm mesh size) is prosecuted by Swedish vessels.

TR3 (mesh size 16-32 mm)

The distribution of small meshed TR3 fisheries are shown in Figure 2.1-2c. Shrimp (*Crangon*) species are the target and two distinct areas can be identified: in the South, and off the German, Dutch and Belgian coasts.

Fisheries using beam trawls

Two beam-trawl categories operate in the North Sea and the distribution of activity by these is shown in Figure 2.1-2d and Figure 2.1-2e.

BT1 (mesh size >120 mm)

The larger meshed BT1 beam-trawl gear is principally used in the plaice fishery of the Central and Eastern North Sea. Cod is also taken in this fishery. Denmark, Belgium and England mainly carry out this fishery.

BT2 (mesh size between 80 mm and 120 mm)

The BT2 gear (accounting for around 40% of all fishing effort in the North Sea) is mainly used in a fishery located in most Southerly parts of the North Sea and into the Channel. This mixed flatfish fishery for sole, plaice and other flatfish, is operated principally by the Netherlands, Belgium and Germany.

Fisheries using fixed gear fishing methods

A number of fixed gears are employed in the North Sea, the most important being gill nets and trammel nets. Figure 2.1-3 shows the distribution of effort.

- The main gillnet activity (GN1) is from a Danish fishery targeted mainly at cod and plaice. The importance of anglerfish in this fishery has risen in recent years and activity directed at this species has increased by Scottish vessels.
- Trammel net fisheries (GT1)are operated by a number of countries and are particularly important in more coastal waters for example off the English North Sea and Channel coasts for sole. Catches of plaice and cod are also important particularly in the fishery operated by Denmark.
- Fairly small scale fisheries using longlines (LL) make catches of cod, hake and ling.

Fisheries using other gears (pots, dredges etc.)

Most countries also have inshore fisheries prosecuted by under 10m vessels using a variety of gears (including pots, dredges etc.) for a variety of fish and shellfish species.

Fisheries for pelagic and industrial species

The pelagic and industrial fisheries are more specialist, typically targeting and catching predominantly one species at a time. In the North Sea the main pelagic species is herring and the main industrial fisheries are for Norway pout and sandeel.

Figure 2.1-2 Distribution of North Sea, Skagerrak and Eastern Channel international fishing effort (EU) in hours fishing by ICES statistical rectangle. Figures shown for 3 trawl gears TR1, TR2 and TR3 and for two beam trawls BT1 and BT2. Note: a) that within each plot the darker the shading, the higher the effort; b) that the scales are different between the plots and so the plots should not be used to infer relative magnitude of effort between gears, but rather for examining distribution of effort.

Figure 2.1-3 Distribution of North Sea, Skagerrak and Eastern Channel international fishing effort (EU) in hours fishing by ICES statistical rectangle. Figures shown for gillnets GN1, trammel nets GT1 and long lines LL1. Note: a) that within each plot the darker the shading, the higher the effort; b) that the scales are different between the plots and so the plots should not be used to infer relative magnitude of effort between gears, but rather for examining distribution of effort.

2.2 General description of national sampling programmes for discards

Information on landings and discards in EU fisheries are derived and estimated from two data sources:

- Landings information from national fisheries statistics
- Discard information from Data Collection Framework

Information on volume of landings is derived from the national fisheries statistics which are recorded according to the control regulation (Council Regulation 1224/2009). As part of it, logbooks or sales slips record volume of landings by species and size grade per management area. Even though the control regulation also prescribes that fishers have to report all discards above 50 kg per species per trip, only very limited information on discards is actually registered in the logbooks.

Discard information is collected according to provisions in the Data Collection Framework (DCF) (Council Regulation 199/2008) where MS are obliged to carry out at-sea data collection programs. Under the DCF, national onboard observer programs were designed to estimate the catch of commercial marine fisheries, in particular of those individuals discarded at-sea. Discard estimates are included in several fish stock assessments (e.g. cod, haddock, plaice) so that the contribution of discards to the overall fishing mortality can be taken into account when deciding on management measures. The main sampling techniques to estimate discarding in commercial fisheries in the North Sea are at-sea observer and self-sampling programs.

In the at-sea observer programs, scientific observers are on board of commercial vessels during regular operations. Relevant information are recorded concerning catch, vessel, gear characteristics, mesh size, selective gear devices, fishing ground, weather, ownership, etc.. The observers handle the catch on board. The collected data are used for estimating the total discard by number and weight, subdivided by species, age, sex, maturity, area, quarter and métier. Observer programs have the potential to provide good quality data, but they are costly and often have relative low coverage; typically around 1% of the fishing activities are covered. The low sampling levels and the inherent variation in discarding levels between trips, even with the same vessel and gear, lead to highly variable data. Bias could be introduced because of non- random selection of vessels or because of changed behaviour of vessels that carry an observer.

In self-sampling programmes, fishers themselves retain fractions of their discards on board during a number of fishing trips throughout the year. For each sampled haul, information on the composition and volume of the catch, environmental and operational characteristics is recorded. Discard samples from the self-sampling programme are either processed at-sea by the fishers themselves or returned to the laboratory and analysed by scientists. Self-sampling programmes have the potential to generate relatively large amounts of data and increase the involvement of stakeholders in the data collection process. However, concerns are sometimes raised about to the potential interest of the self-sampler to show "good" data. Cross-validation of self-sampling data is therefore an important method.

There is a large diversity in the fisheries of the different member states. Therefore, a strict and uniform protocol for sampling at-sea covering different fisheries does not exist (Uhlmann *et al.*

2013). The differences in fisheries result in a considerable diversity in the onboard sampling practices which are further influenced by the volume of the catch and the diversity of the catch composition.

2.3 Description of the data sources for the discard atlas

The results presented in this discard atlas are based on the STECF database on fisheries data that is generated by the STECF Expert Working Group on the Evaluation of Fishing Effort Regimes (STECF EWG 13-13). Each year a DCF fishing data call is launched and each member state is asked to deliver data on landings and discards (and effort) in a predefined format. A detailed description of available data from each member state can be found in STECF (2013a). In general, landings and discard data are available from 2003 to 2012. However, only data from 2010 to 2012 were used because the quality of data has improved over the years and the number of species included has increased.

Other data sources for the North Sea discard atlas have also been considered, notably:

- New data compilation specifically for this discard atlas
- ICES WGMIXFISH database
- Data derived from individual ICES expert group reports.

A new data compilation process specifically for this discard atlas was ruled out because of the amount of work involved in generating a new data call, specifying the requirements and developing a raising procedure. It was also considered unhelpful to generate yet another data compilation process. The ICES WGMIXFISH approach was explored but did not cover all the areas and all the species of interest (for example it lacks the information on non-target species and pelagic species). Individual expert group reports were ruled out because there is no subdivision available by country and gear.

In line with the cod management plan (Council Regulation 1342/2008), the greater North Sea is described as management area 3b in annual Annex IIa of the TAC and Quota Regulations (e.g. Council Regulation 40/2013). The greater North Sea can be further subdivided into:

- 3b1 Skagerrak (ICES area IIIaN)
- 3b2 North Sea (ICES area IV and EU waters of ICES area IIa)
- 3b3 Eastern channel (ICES area VIId).

For this discard atlas the same definitions were used. Information on landings, discards and catch are presented for each of the three sub-areas separately.

Based on raw data submitted by Member States to STECF, the integration of fisheries specific international landings and discards is carried out by the STECF Expert Working Group on the Evaluation of Effort Regimes (STECF 2013a). The latest meeting of this group was in October 2013. Aggregated estimates for landings and discards from this meeting were utilized to give a comprehensive overview on landings and discards for this discard atlas. Only TAC regulated species are included in the discard atlas because they will be subject to the landing obligation.

The data aggregation and estimation procedures of the STECF effort group follow simple raising strategies as outlined below and are generally consistent with the method used in the discard estimates published by the FAO (Kelleher, 2004). The basic idea is to link the information about fisheries specific discards and landings from each member state and replacing poor or lacking values with aggregated information from other countries to get an as much as possible complete picture of discarding in the various fisheries (see also Figure 1):

Aggregation of national data

The national fisheries data were classified to their management areas or sub-areas, species, years, quarters and effort regulated gear groups as outlined in Annex 1 of the cod management plan 1342/2008 (i.e. TR1, TR2, TR3, BT1, BT2, GN1, GT1, LL1). Information for effort unregulated gears (e.g., pelagic trawls) was also available from the DCF data call. Unregulated gears were not further grouped but data were aggregated over mesh size ranges.

Estimation of discard ratios by fisheries and raising of discard for non-sampled fisheries

If a member state has not submitted discard information for a certain fishery in a certain area, the average discard ratio from other member states submitting discard information within the same fishery was used.

Let the following notation be: D=discards, L= landings, *snf* = sampled national fishery with a discard value from 0 to X, *unf* = un-sampled national fishery without a discard value. The available landings and discards information were aggregated (summed) over fisheries to metier level (by species, year, quarter, regulated area, gear group and special condition). Mean discard ratios (DR) were calculated:

$$DR = \frac{\sum_{snf} D_{snf}}{\sum_{snf} (L_{snf} + D_{snf})}$$

if $D_{snf} \ge 0$ and with $L_{snf} + D_{snf} > 0$

Fisheries specific discard amounts were then calculated if no discard information was available by

$$D_{unf} = \frac{L_{unf}.DR}{(1 - DR)}$$
 where D_{unf} is null (empty)

If no country has submitted discard information and no average DR could be estimated for a metier, it would remain without discard estimate.

Estimation of further aggregated landings, discards and catch

Catches by national metier were estimated as the sum of landings and discards. To be able to give more aggregated overviews (e.g., per species in a management area) landings, discards and catches were further summed over metiers. Where discard information was lacking (no country has submitted data) no further raising was applied. This could lead to an underestimation of discards but avoided the introduction of speculative discard estimates.

Figure 2.3-1 Schematic overview over the discard raising procedure used in the STECF database

2.4 Limitations and known issues with the catch database used.

A note on possible outliers and high discards values

STECF considers that overall, discards information in the North Sea is of good quality with broad coverage (also in comparison with most other areas), so the main patterns can be considered accurate. However, STECF draws attention that in some cases very high discards values may appear in the results. For example, herring discards of 13.307 tonnes in Skagerrak 2010 against 355 and 29 tonnes in 2011 and 2012 respectively (Table 3.2.1), or roundnose grenadier discards of 450 tonnes in Skagerrak in 2011 against 8 and 2 tonnes in 2010 and 2012 respectively (table 3.2.6). Such values are usually associated with low landings values and are typically artefacts of the automatic raising procedure for uncommon species or for species with high discards ratios. For uncommon species (such as roundnose grenadier), sampling coverage might be insufficient to give a proper estimate. The raising could be based on very few fish in very few hauls which generated a very wide confidence interval. For species with discards ratios close to 100%, actual discards quantities cannot really be estimated from the landings, because there are almost no landings to raise from. In those cases, small differences in estimated discards ratio (few tens of a percent) can give strong differences in

tonnage. In these two cases, it is important to interpret results with even more care than for other "usual" species with "usual" discards ratios. STECF underlines that it is not possible to track and remove every single outlier of every single species for every single country, given the size of the data base. The STECF database relies on individual countries to provide the best possible discards estimates. The combined outcomes of the database cannot be any better than the inputs (STECF 2013a, 2013c).

Considerations of differences between ICES and STECF specifically for the North Sea

For a number of stocks, ICES (WGMIXFISH) and STECF (EWG 13-13) have compiled similar information that seemed to have substantial differences (see for example ICES 2013b). This question was also addressed in some details by STECF 13-16 (STECF 2013b). Because this issue is quite relevant for the current North Sea atlas, the extract of this STECF report is presented in annex 2 and summarised below.

At the stock level, there is globally a fairly good agreement between the discards ratios estimated by ICES and STECF respectively. This agreement has been consistently improving year after year due to increased focus on data accuracy in all European countries. STECF EWG 13-16 has shown that for North Sea demersal stocks, there is a broad convergence between STECF and ICES estimates of discards at the overall stock level, with an absolute difference in discard ratio of less than 10% (expressed in % of catch) (STECF 2013b). However, this overall consistency at the stock level can nevertheless hide major discrepancies at the fleet and country level. Discard data is only sampled for a fraction of the national fleets. The way the discard data is raised within a nation can be affected by the grouping of vessels implied by a fleet specific data call. Additionally, once the 'raw' data is supplied, an expert group has several options on how to assign (raise) a discard ratio to unsampled fleets. The assignment process for unsampled fleets is different for WGMIXFISH and STECF, as described in the Annex 2. Differences could then result from different rules for assigning discards to metiers where discard data is missing. It could also be an effect of countries submitting different discard estimates to various working groups. Both are likely to happen at the same time.

A brief illustration of this is given below with the example of 2012 whiting catch data in the North Sea. The total landings for the entire area is consistent and the absolute difference in the estimated discards ratio are within 10%. However, the breakdown between gears differs both with regards to the landings and to the discards. The overall picture is coherent in terms of the scale of discards ratio for the main gears (TR1-TR2), which are likely to be well sampled. Discards and discards ratio estimates for less important gears are obviously more uncertain and less sampled.

ICES INTERCATCH

Gear	2012 landings	2012 Discards	2012 DR
BEAM	6	29	0.83
BT1	1	0	0.33
BT2	33	1372	0.98
GN1	7	7	0.49
GT1	3	2	0.40
LL1	2	1	0.33
oth	279	140	0.33
OTTER	294	146	0.33
TR1	7925	837	0.10
TR2	3815	3223	0.46
Grand Total	12366	5757	0.32

Gear	2012 landings	2012 Discards	2012 DR
BEAM	8	20	0.71
BT1	1		0.00
BT2	280	1657	0.86
DEM_SEINE	39		0.00
DREDGE	0		0.00
GN1	2	207	0.99
GT1	1	9	0.86
LL1	0		0.00
none	0		0.00
OTTER	58	1425	0.96
PEL_SEINE	1	0	0.07
PEL_TRAWL	339		0.00
POTS	0		0.00
TR1	7805	713	0.08
TR2	3474	4448	0.56
TR3	74		0.00
Grand Total	12083	8477	0.41

The main conclusion for the discard atlas is that any discard data that is based on stratified sampling is sensitive to the raising method used for unsampled strata. The choice of method may potentially differ according to objectives.

STECF

3 Landings and discard estimates by area and fishery

Landings and discard data and discard ratios presented throughout this atlas are expressed in tonnage (weight). As discards usually contain larger proportions of small individuals compared to landing, it must be kept in mind that the estimated discards ratios would probably be higher if they would be expressed in numbers of fish.

In the following an overview is presented of landings and discards for regulated species. The sections have been grouped by area (North Sea, Skagerrak and Eastern Channel) and by type of fisheries (demersal and pelagic/industrial).

Demers	sal	Pelagic and industrial					
ANF	Anglerfish	NOP	Norway pout				
BLI	Blue ling	SAN	Sandeel				
BLL	Brill	ANE	Anchovy				
COD	Cod	BFT	Bluefin tuna				
DAB	Dab	BOC	Boarfish				
GHL	Greenland halibut	BOR	Boarfishes				
HAD	Haddock	HER	Herring				
HKE	Hake	HOM	Horse mackerel				
LDB	Four-spot megrim	JAX	Horse mackerels				
LEM	Lemon sole	MAC	Mackerel				
LEZ	Megrims	REB	Beaked redfish				
LIN	Ling	RED	Atlantic redfishes				
MEG	Megrim	REG	Golden redfish				
NEP	Norway lobster	SAL	Salmon				
PLE	Plaice	SPR	Sprat				
РОК	Saithe	SWO	Swordfish				
POL	Pollack	WHB	Blue whiting				
PRA	Northern prawn						
RNG	Roundnose grenadier						
SOL	Sole						
TUR	Turbot						
USK	Tusk						
WHG	Whiting						

Table 2.4-1 Overview of species in the categories "demersal" and "pelagic/industrial"

Each of the sections contains a description of the mains results that are shown in the data tables for a region and category. If sufficient information is available for a region, a set of six tables demonstrates different 'views' on the available data. The views are comply with the requirement that a table should fit on one page. If sufficient information was not available, only the overview table for that region would be presented. The different 'views' would not be presented because they were not considered to provide meaningful information.

Annex 3 contains more detailed tables ('view') on the information by region. The tables are structured according to species, country and gear. Here the information is not restricted to the one-table-per-page criterion.

3.1 Area IV (North Sea)

3.1.1 Demersal fisheries

On average 40% of the catch in weight was discarded in the North Sea between 2010 and 2012 and 78% of the discards consisted of plaice and dab. Average discard ratios were highly variable between species ranging from zero (e.g., megrim, blue ling) to over ninety percent (dab) (Table 3.1-1).

The highest average catch between 2010 and 2012 was estimated for plaice with a discard ratio of 43%. Dab had the second highest average catch and by far the highest discard ratios (91% on average). The high abundance of dab and the low market value contributed to this result. Discard ratios above ninety percent mean that small changes in discard ratios lead to very high changes in absolute discard estimates in tonnes. Therefore, absolute discard estimates in tonnes have to be taken with great care for dab.

In contrast to the two mentioned flatfish species, discard ratios for sole were much lower (13% on average) demonstrating the high market value and the ability of fishermen to avoid unwanted bycatch of sole.

The roundfish species saithe, haddock, cod and whiting were among the top ten species related to their average catch between 2010 and 2012. Discard ratios showed large differences between these species as a result of differences in fisheries, spatial distribution and abundance of stocks as well as market value. While the average discard ratio was 43% for whiting, only 10% of the catch of saithe was discarded. Discard ratios for cod (15%) and haddock (21%) were in between these two extremes.

Large variation in discard ratios are apparent for some of some relatively seldom caught species like pollack, roundnose grenadier and ling. It is unclear whether this reflects the true variability or an artefact of the discard sampling.

Discard ratios for the more abundant species hake and lemon sole were more stable and on average 25% and 22% respectively. Discard ratios for the high value species turbot and brill were below 5% in all years. For some by-catch species (anglerfish, megrims, Greenland halibut, blue ling, tusk) extremely low or even zero discards were reported. Although by-catch species have a relatively low importance in terms of catch in tonnes, they can become important "choke species" under a discard ban.

Quality of discard information

Table 3.1-1 also highlights how much of the final discard estimates stem from reported data and how much had to be filled in by assuming an average discard ratio from countries that have submitted data for a given metier/fishery. The quality is expressed as %DQ (% discard quality) derived as the amount of discards from submitted data relative to the overall estimate of discards (in tonnes).

The overall %DQ was 71% in 2010, 23% in 2011 and 60% in 2012. Discard quality improved for dab, cod, Norway lobster, lemon sole, turbot and anglerfish in 2012. Only for a few species (e.g., hake and sole) the discard quality decreased in 2012.

Data quality ratios were low in some years for whiting, plaice, dab, *Nephrops*, turbot and ling. In general, for cod, saithe, haddock, sole and anglerfish the coverage of discard estimates was high. For

the three species with the highest discard ratios and catches (plaice, dab, whiting), care is needed in interpreting the results as they could be biased to some extent by the usage of average discard ratios instead of reported data. Especially the 2011 estimates are of concern because more than 50% of the discard estimates for these species stem from fill-ins. This would require a critical evaluation of the data available and submitted for that year. Discard estimates for cod, saithe, haddock, sole and anglerfish show this problem to a lesser extent.

Discard ratios per species and quota availability

Average discard ratios for the top ten species varied between countries dependent on the type of fisheries, main fishing areas, national markets and availability of quotas (Table 3.1-2). For example, average discard ratios for plaice were above 50% for the Netherlands, Germany and Belgium fishing mainly with smaller meshed beam trawls for sole and plaice. Denmark fishes for plaice mainly with large meshed otter trawls and reported only 8% discards on average. Dab was heavily discarded by all countries as there is hardly any market for this species.

Scotland has the highest absolute discard estimates for the main roundfish stocks cod, whiting, haddock and saithe. Apart for whiting this also applies to discard ratios. Reasons are, for example, high discard ratios in the *Nephrops* fisheries, higher abundance of cod in the northern part of the North Sea and limiting quotas for saithe. The Scottish and English discard ratios were close to zero for *Nephrops* (because Nephrops discard data had not been submitted to STECF by England) while for other countries discard ratios up to 33% were estimated.

The discard ratios for sole were below 10% for England, Germany and France but above 10% for Belgium and the Netherlands. Hake was discarded to some extent by all countries. The high discard estimated for Germany in 2011 appears as an outlier. For anglerfish hardly any discards were reported.

When introducing catch quota that takes into account the current discarding practices, MS and fisheries with high discard ratios may run into problems when an average discard ratio is used to calculate the catch quotas.

Discard ratios per country

The importance of species in the catch varied by country (Table 3.1-4). The Netherlands mainly fish for flatfish in the Southern North Sea similar to Belgium. Plaice, sole and dab made up the majority of catches between 2010 and 2012. In contrast, Scotland has its main fisheries in the northern part of the North Sea. Therefore, haddock, cod and *Nephrops* were under the top 3 species and no flatfish species could be found among the top 6 species. France mainly fishes for saithe in the northern part of the North Sea and for whiting in the South. Denmark, England and Germany have a wider range of fisheries. Therefore, flatfish as well as roundfish could be found among the top 6 species and catches were distributed more evenly over flatfish and roundfish.

Discard ratios per gear

Large meshed otter trawls and demersal seines (TR1) are mainly used to fish for roundfish as saithe, cod, haddock and whiting in the central and northern part of the North Sea (Table 3.1-5). In addition, in the last years more and more plaice is targeted with TR1 at least in some countries (e.g., Denmark,

Germany). Estimated discard ratios were moderate to low (<10% for saithe and plaice) in these fisheries.

Smaller meshed otter trawls (TR2) are the main gear in the *Nephrops* fisheries with by-catch of cod and haddock in the northern part of the North Sea and plaice, whiting and dab in the Southern part. French fishermen use TR2 gears in mixed demersal fisheries in the North Sea and at particular times of the year they use the TR2 gears to target whiting in the southern North Sea. The estimated discard ratios in TR2 were high compared to the TR1 fisheries. However, in absolute terms the catch of cod and haddock in the TR2 fisheries was considerably lower than in the TR1 fisheries. The high discard estimate for plaice in 2011 appears to be an outlier resulting from a low percentage of reported data in this year.

Also the flatfish fisheries with beam trawls (BT2) produced high discard ratios especially for plaice, dab and whiting. Currently, discard ratios for cod are low in this fishery (11%).

Lowest discard ratios were reported for fisheries with gillnets (GN1) and large meshed beam trawls (BT1). However, reported data from these fisheries are scarce. Therefore, the very low discard estimates (often a zero estimate) have to be interpreted with care.

		2010	2010	2010	2010	2010		2011	2011	2011	2011		2011	2012	2012	2012	2012	2	012	Avg	AVG	AVG	AVG	à AVG	
																				LAND	DISC	CATCH	%DR	۲ %DQ	
SPECIE	S	LAND	DISC	Catch	%DR	%DQ		LAND	DISC	Catch	%DR		%DQ	LAND	DISC	Catch	%DR	%	DQ						
PLE	Plaice	58962	30124	89086	34%	79	%	64707	67974	132681	51%		31%	69868	47296	117164	40%		57%	64513	48464	112977	43%	\bigcirc	49%
DAB	Dab	7061	52024	59085	88%	67	%	6611	106262	112873	94%	\bigcirc	3%	5964	43934	49898	88%	0	50%	6545	67407	73952	91%		32%
РОК	Saithe	34112	2156	36268	6%	73	%	33530	3399	36930	9%	\bigcirc	79%	33297	5537	38834	14%		75%	33646	3698	37344	10%	\bigcirc	76%
HAD	Haddock	26640	8676	35316	25%	96	%	26411	9016	35427	25%	\bigcirc	93%	29242	3606	32848	11%	9	} 3%	27431	7099	34530	21%	\bigcirc	94%
COD	Cod	25971	5131	31102	16%	90	%	22510	3343	25854	13%	\bigcirc	80%	22260	4072	26331	15%	0	€23	23580	4182	27762	15%	\bigcirc	88%
WHG	Whiting	10784	12399	23182	53%	65	%	18678	10787	29466	37%	\bigcirc	44%	12083	8489	20571	41%	0	47%	13848	10558	24406	43%	\bigcirc	53%
NEP	Norway lobster	19640	285	19925	1%	9 47	%	15716	861	16576	5%	\bigcirc	21%	12410	1959	14369	14%	\bigcirc	55%	15922	1035	16957	6%	\bigcirc	51%
SOL	Sole	12209	1514	13723	11%	97	%	10394	1224	11617	11%	\bigcirc	99%	11142	2428	13570	18%		75%	11248	1722	12970	13%	\bigcirc	87%
HKE	Hake	5726	1246	6972	18%	0 40	%	5861	2214	8075	27%	\bigcirc	78%	6611	2675	9286	29%	0	13%	6066	2045	8111	25%	\bigcirc	42%
ANF	Anglerfish	8178	20	8198	0%	78	%	8257	15	8272	0%	\bigcirc	68%	6916	9	6925	0%	0) 3%	7784	15	7798	0%	\bigcirc	78%
LIN	Ling	2681	3870	6552	59%	10	%	2920	294	3214	9%	\bigcirc	45%	2753	127	2879	4%		6%	2785	1430	4215	34%	\bigcirc	12%
LEM	Lemon sole	2492	502	2993	17%	69	%	3255	706	3960	18%	\bigcirc	31%	3024	1337	4361	31%		75%	2924	848	3772	22%	\bigcirc	61%
TUR	Turbot	2325	5	2330	0%	15	%	2690	58	2748	2%	\bigcirc	7%	2869	120	2989	4%		39%	2628	61	2689	2%	\bigcirc	61%
LEZ	Megrims	1480	6	1486	0%	89	%	1445	0	1445	0%	\bigcirc	59%	1453	0	1453	0%		0%	1459	2	1461	0%		87%
POL	Pollack	894	546	1440	38%	9 47	%	698	1	699	0%	\bigcirc	48%	704	16	720	2%	0	53%	765	188	953	20%	\bigcirc	47%
PRA	Northern prawn	251	0	251	0%	0 100	%	402	21	423	5%	\bigcirc	100%	287	2	289	1%	0	58%	313	8	321	2%		96%
USK	Tusk	140	1	140	0%	54	%	152	0	152	0%	\bigcirc	93%	132	0	132	0%	0 10)0%	141	0	142	0%	\bigcirc	73%
GHL	Greenland halibut	166	0	166	0%	93	%	102	0	102	0%	\bigcirc	100%	114	0	114	0%		0%	127	0	127	0%	\bigcirc	98%
BLL	Brill	103	0	103	0%	0 100	%	99	5	104	4%	\bigcirc	100%	108	2	110	2%	0 10)0%	103	2	106	2%		100%
BLI	Blue ling	58	0	58	0%	0	%	9	0	9	0%	\bigcirc	63%	15	0	15	0%		0%	27	0	27	0%	\bigcirc	63%
RNG	Roundnose grenadie	24	0	24	0%	0	%	0	2	2	82%	\bigcirc	100%	0	0	1	14%	1)0%	8	1	9	6%		100%
Grand	Total	219896	118505	338401	35%	71	<mark>%</mark> 2	224446	206182	430628	48%		23%	221252	121608	342859	35%		50%	221865	148765	370630	40%	\bigcirc	46%

Table 3.1-1 North Sea || demersal fisheries: landings and discards per species and year and area; table sorted in descending order on average catch 2010-2012.

Note: %DR refers to the discard : catchratio (discard/catch). %DQ refers to the quality of the discard estimate (the proportion of the discard estimate derived from actual data). The colour coding refers to larger than 66% (green), between 33% and 66% (orange) and below 33% (red).

SPECIES	TAC area	COUNT	INITIAI	FINAL	%	INITIAI	FINAL	%	INITIAI	FINAL	%	avo	avo
0. 20.20	into aloa	RY	2010	2010	change	2011	2011	change	2012	2012	change	INITIAL	ADAPTED
					2010			2011			2012	2010-2012	2010-2012
	Norwagian waters of ICES division IV/	DEI	46	47	20/	15	42	70/	45	41	0%	15	45
ANF	Norwegian waters of ICES division IV (DEU	40	24	2%	45 18	42	-1% 22%	45	23	-9% 28%	45	45 18
		DNK	1182	1258	6%	1152	1166	1%	1152	1158	1%	1162	1162
		GBR	276	194	-30%	269	251	-7%	269	262	-3%	271	271
		NLD	17	17	0%	16	19	19%	16	16	0%	16	16
	EU waters of ICES zones IIa and IV	BEL	401	441	10%	341	341	0%	324	358	10%	355	355
		DEU	884	972	10%	752	752	0%	714	789	11%	783	783
		FRA	82	89	9%	70	64	-8%	66	72	9%	73	73
		GBR	9233	9763	6%	7846	7537	-4%	7455	8199	10%	8178	8178
		NLD	303	333	10%	258	258	0%	245	281	15%	269	269
ANE Sum		SVVE	12885	13622	10%	9	10828	0%	0	11594	13%	9	9
COD	Norwegian waters of ICES division IV (SWE	382	382	0%	382	382	0%	382	382	0%	382	382
	ICES area IV , EU waters of ICES area	BEL	991	1096	11%	793	838	6%	782	861	10%	855	855
		DEU	3612	2967	-18%	2889	2635	-9%	2850	2437	-14%	3117	3117
			5696	6383	12%	4557	5095	12%	4495	4953	10%	4916	4916
		GBR	13067	14281	2%	10455	12485	19%	10311	12336	20%	11278	11278
		NLD	3219	2771	-14%	2575	2168	-16%	2540	2089	-18%	2778	2778
		NOR	5704	5704	0%	4563	4563	0%	4501	4501	0%	4923	4923
		POL	0	5	#DIV/0!	0	3	#DIV/0!	0	0	#DIV/0!	0	0
COD Sum		SWE	33034	34872	0%	27228	29201	0%	26857	28465	13%	34	34
DAB/FLE	EU waters of ICES zones IIa and IV	BEL	513	763	49%	503	753	50%	503	804	60%	506	506
		DEU	2890	2515	-13%	2832	2457	-13%	2832	2432	-14%	2851	2851
		DNK	1927	1927	0%	1888	1888	0%	1888	1888	0%	1901	1901
		GBR	200	270 1305	35%	196	2/6	41%	196	196	0% 1%	197	197
		NLD	11654	11934	2%	11421	11421	0%	11421	11456	4%	11499	11499
		SWE	6	6	0%	6	6	0%	6	6	0%	6	6
DAB/FLE S	um	[18810	18810		18434	18434		18434	18434			
HAD	Norwegian waters of ICES division IV (BEI	707	707	-50%	707	707	-10%	707	707	0%	707	707
	ICES area IV and EO waters of ICES and	DEU	200	634	-28%	858	744	-13%	979	630	-2%	207 904	207 904
		DNK	1376	920	-33%	1349	1066	-21%	1539	1285	-17%	1421	1421
		FRA	1526	671	-56%	1496	423	-72%	1707	1467	-14%	1576	1576
		GBR	22698	25367	12%	22250	24360	9%	25386	30249	19%	23445	23445
		NOR	8083	8083	-67% 0%	7625	7625	-12%	9008	9008	20%	8239	8239
		POL	0000	1	#DIV/0!	0	0	#DIV/0!	0	0000	#DIV/0!	0_00	0200
		SWE	139	16	-88%	136	128	-6%	155	168	8%	143	143
HAD Sum		IDF:	35755	36549	40.40/	34764	35341	000/	39873	43935	4.40/	00	00
HKE	EU waters of ICES zones IIa and IV	DEL	28	57	104%	28	39 120	39% -6%	28	32 102	-20%	28	28
		DNK	1119	1195	7%	1119	1086	-3%	1119	875	-22%	1119	1119
		FRA	248	617	149%	248	760	206%	248	568	129%	248	248
		GBR	348	1989	472%	348	1932	455%	348	1840	429%	348	348
		NLD SW/E	64	69	8% /////0	64	96	50% #DIV/01	64	112	75% #DIV/01	64	64
HKE Sum		SWL	1935	4094	#DIV/0:	1935	4035	#DIV/0:	1935	3529	#DIV/0:	0	0
PLE	ICES area IV , EU waters of ICES area	BEL	3665	4096	12%	4238	4701	11%	4874	6320	30%	4259	4259
		DEU	3436	3802	11%	3973	4168	5%	4569	4619	1%	3993	3993
			11911	10019	-16%	13/72	12394	-10%	15840	14559	-8%	13841	13841
		GBR	16951	14763	-42 %	19599	15996	-18%	22542	18943	-16%	19697	19697
		NLD	22907	26575	16%	26485	30947	17%	30462	33906	11%	26618	26618
		NOR	4268	4168	-2%	4538	4538	0%	5209	5209	0%	4672	4672
		SWE	63825	63825	#DIV/0!	73400	73400	#DIV/0!	84410	84410	#DIV/0!	0	0
POK	Norwegian waters of ICES division IV (SWE	880	880	0%	880	880	0%	880	880	0%	880	880
	ICES zones IIIa and IV and EU waters	BEL	37	37	0%	32	15	-53%	27	17	-37%	32	32
		DEU	11002	11794	7%	9565	10530	10%	8241	8403	2%	9603	9603
			4357	8471	94%	3788	6550 15142	-33%	3263	15362	-21%	3803	22508
		GBR	8435	12094	43%	7333	10455	43%	6318	8139	29%	7362	7362
		NLD	110	44	-60%	96	31	-68%	82	35	-57%	96	96
		NOR	56613	56613	0%	49476	49476	0%	41546	41546	0%	49212	49212
		SWE	599	684 784	#DIV/0! 31%	520	584	#DIV/0! 3%	448	448	#DIV/0!	522	522
POK Sum		,2	107924	107924	5170	94198	94198	578	80200	80200	070	962	022
SOL	EU waters of ICES zones IIa and IV	BEL	1171	1439	23%	1171	1515	29%	1346	1558	16%	1229	1229
		DEU	937	641	-32%	937	794	-15%	1077	1075	0%	984	984
			234	761	42%	535	655 770	22%	015 260	501 701	-2%	246	56Z 246
		GBR	602	1207	100%	602	1057	76%	692	1217	76%	632	632
		NLD	10571	10142	-4%	10571	10770	2%	12151	12465	3%	11098	11098
		NOR	50	50	0%	50	50	0%	50	50	0%	50	50
THR/RI	EU waters of ICES zones IIa and IV	BEI	347	15157	-14%	340	200	-15%	16200	258	-24%	342	342
TONDLL		DEU	189	311	65%	186	267	44%	186	259	39%	187	187
		DNK	742	742	0%	727	727	0%	727	727	0%	732	732
		FRA	89	89	0%	88	88	0%	88	88	0%	88	88
		GBR	732	610	-17%	717	686	-4%	717	515	-28%	722	722
		SWE	2033	2003	∠% 0%	25/9	25/9	0%	25/9	2/90	o% 0%	2597	2597
TUR/BLL S	um		4737	4737	570	4642	4642	570	4642	4642	0,0		
WHG	ICES area IV and EU waters of ICES a	BEL	236	129	-45%	286	81	-72%	337	267	-21%	286	286
		DEU	266	156	-41%	321	151	-53%	379	164	-57%	322	322
		FRA	1022	2367	-85% 54%	1236	284 2779	-77%	1458 2191	326	-78%	1239	1239
		GBR	7391	7782	5%	8933	9150	2%	10539	10935	4%	8954	8954
		NLD	591	604	2%	714	625	-12%	843	703	-17%	716	716
		NOR	790	640	-19%	1483	1483	0%	1306	1306	0%	1193	1193
WILLO CLUM		SWE	2	2	0%	2	2	0%	47050	47050	0%	2	2

SPECIES	SPEC_NAME	COUNTRY	2010	2010	2010	2011	2011	2011	2012	2012	2012	Avg 2010-	Avg 2010-	Avg	Avg
			Landings	Discards	%DR	Landings	Discards	%DR	Landings	Discards	%DR	2012	2012	2010-	2010-
												Landings	Discards	2012	2012
														Catch	%DR
PLE	Plaice	NLD	27,227	21,342	44%	28,761	42,060	59%	31,610	32,702	51%	29,199	32,035	61,234	52%
		ENG	11,367	2,479	18%	12,222	1,435	11%	14,038	1,423	9%	12,542	1,779	14,321	12%
		DNK	9,536	1,587	14%	11,816	637	5%	12,312	589	5%	11,221	938	12,159	8%
		DEU	3,728	2,438	40%	3,826	18,932	83%	3,837	2,145	36%	3,797	7,838	11,636	67%
		BEL	3,566	1.069	23%	4,509	3.809	46%	5.023	9.669	66%	4,366	4,849	9.215	53%
DAB	Dab	NLD	5.015	39,591	89%	4.627	80,599	95%	3,986	28.828	88%	4,543	49.672	54.215	92%
		DFU	356	6.203	95%	314	10.270	97%	239	6.585	96%	303	7.686	7,988	96%
		FRA	122	2.246	95%	188	10.538	98%	87	1.069	92%	132	4.617	4,750	97%
		BEL	331	855	72%	242	3 174	93%	452	4 1 2 8	90%	342	2 719	3 061	89%
		DNK	524	2 514	83%	608	1 060	64%	541	1 076	67%	558	1 550	2 107	74%
POK	Saithe	DEU	11 073	399	3%	9 324	298	3%	7 859	3	0%	9 4 1 9	233	9 652	2%
1 OK	Suitile	sco	7 846	1 473	16%	6 542	2 551	28%	5 475	4 121	43%	6 6 2 1	2 715	9 336	29%
		ERA	5 281	1,475	10%	7 813	2,351	0%	12 //5	-,121	-3%	8546	2,713	8 5 4 9	25%
		DNK	1 850	3/	1%	5 238	3	0%	/ 300	56	1%	4 802	31	1 833	1%
		ENG	4,000	2/1	£%	3 753	108	12%	2 251	1 3//	37%	3 360	60/	4,055	17%
	Haddock	500	22 612	0 107	27%	21 109	9 001	200/	2,251	2 2 2 2 7 7	110/	22 072	6 502	20 572	220/
HAD	Hauuuuk	ENG	1 752	0,107	2770	1 702	0,091	20%	23,493	3,227	20/	1 502	0,302	1 906	120/
			1,735	105	1.0%	1,702	437	20%	1,525	224	100/	1,353	127	1,800	12/0
			209	20/	10%	1 503	21	5/0 10/	1,040	224	10/0	645	127	570	15/0
			208	24	1%	1,595	120	100/	100	52	4%	502	10	672	270
00	Cod	DEU	11 5 49	2 0 2 2	270	10 109	2 250	19%	10 474	2 214	10%	10 710	2 1 2 2	12 842	12%
COD	Cou		11,546	3,932	25%	10,108	2,250	10%	10,474	3,214	23%	10,710	3,132	15,642	23%
			5,755	3/1	0%	5,011	195	4%	4,970	500	770	5,239	510	5,549	0%
		DEU	2,870	197	6%	2,224	208	9%	2,134	147	6%	2,409	184	2,593	/%
			2,541	314	11%	1,910	200	9%	1,855	227	11%	2,102	247	2,349	11%
	and the	ENG	1,902	5 000	6%	1,692	225	12%	1,229	53	4%	1,608	132	1,740	8%
WHG	whiting	SCO	6,531	5,069	44%	7,514	3,554	32%	8,702	1,906	18%	7,583	3,510	11,092	32%
		FRA	2,280	3,205	58%	9,288	5,494	3/%	1,540	2,470	62%	4,370	3,723	8,092	46%
		NLD	585	2,897	83%	519	/90	60%	451	2,020	82%	518	1,902	2,421	79%
		ENG	866	445	34%	955	415	30%	/65	3/3	33%	862	411	1,273	32%
		DNK	158	191	55%	135	109	45%	506	1,471	74%	266	590	856	69%
NEP	Norway lobster	SCO	15,724	18	0%	11,364	3	0%	8,459	28	0%	11,849	16	11,865	0%
		NLD	692	78	10%	1,031	367	26%	1,024	894	47%	916	446	1,362	33%
		ENG	1,483	3	0%	1,258	0	0%	1,143	5	0%	1,295	2	1,297	0%
		DNK	602	133	18%	825	182	18%	724	407	36%	717	241	958	25%
		DEU	377	41	10%	554	200	27%	387	303	44%	439	182	621	29%
SOL	Sole	NLD	9,133	1,308	13%	7,960	997	11%	8,823	2,084	19%	8,639	1,463	10,102	14%
		BEL	1,254	127	9%	868	191	18%	602	285	32%	908	201	1,109	18%
		ENG	618	16	3%	428	5	1%	313	4	1%	453	8	461	2%
		DEU	525	26	5%	329	28	8%	427	32	7%	427	28	455	6%
		FRA	245	11	4%	462	2	0%	533	18	3%	413	10	424	2%
HKE	Hake	SCO	2,941	594	17%	2,959	75	2%	3,122	2,197	41%	3,007	955	3,963	24%
		DNK	1,877	534	22%	1,813	468	21%	2,135	260	11%	1,942	421	2,363	18%
		DEU	273	49	15%	291	1,553	84%	384	42	10%	316	548	864	63%
	1	FRA	351	7	2%	434	45	9%	552	3	0%	446	18	464	4%
		ENG	141	30	18%	177	6	3%	241	150	38%	186	62	248	25%
ANF	Anglerfish	SCO	5,865	0	0%	6,121	0	0%	4,726	0	0%	5,570	0	5,570	0%
	1	DNK	1,414	6	0%	1,310	1	0%	1,373	9	1%	1,366	5	1,371	0%
		ENG	450	0	0%	465	0	0%	307	0	0%	408	0	408	0%
		DEU	241	0	0%	133	0	0%	283	0	0%	219	0	219	0%
		BEL	102	6	6%	116	10	8%	132	0	0%	117	5	122	4%
Grand To	otal		200,334	110,675	36%	203,756	202,199	50%	201,317	116,254	37%	201,803	143,042	344,845	41%

Table 3.1-3 North Sea || demersal fisheries: landings and discards per species, country and year; table sorted in descending order on average catch 2010-2012, top 10 species, top 5 countries per species.

COUNTRY	SPECIES	SPEC_NAME	2010	2010	2010	2011	2011	2011	2012	2012	2012	Avg 2010-	Avg 2010-	Avg	Avg
			Landings	Discards	%DR	Landings	Discards	%DR	Landings	Discards	%DR	2012	2012	2010-	2010-
												Landings	Discards	2012	2012
														Catch	%DR
NLD	PLE	Plaice	27,227	21,342	44%	28,761	42,060	59%	31,610	32,702	51%	29,199	32,035	61,234	52%
	DAB	Dab	5,015	39,591	89%	4,627	80,599	95%	3,986	28,828	88%	4,543	49,672	54,215	92%
	SOL	Sole	9,133	1,308	13%	7,960	997	11%	8,823	2,084	19%	8,639	1,463	10,102	14%
	WHG	Whiting	585	2,897	83%	519	790	60%	451	2,020	82%	518	1,902	2,421	79%
	COD	Cod	2,541	314	11%	1,910	200	9%	1,855	227	11%	2,102	247	2,349	11%
	TUR	Turbot	1,180	2	0%	1,495	49	3%	1,696	101	6%	1,457	51	1,508	3%
SCO	HAD	Haddock	22,612	8,187	27%	21,108	8,091	28%	25,495	3,227	11%	23,072	6,502	29,573	22%
	COD	Cod	11,548	3,932	25%	10,108	2,250	18%	10,474	3,214	23%	10,710	3,132	13,842	23%
	NEP	Norway lobster	15,724	18	0%	11,364	3	0%	8,459	28	0%	11,849	16	11,865	0%
	WHG	Whiting	6,531	5,069	44%	7,514	3,554	32%	8,702	1,906	18%	7,583	3,510	11,092	32%
	РОК	Saithe	7,846	1,473	16%	6,542	2,551	28%	5,475	4,121	43%	6,621	2,715	9,336	29%
	ANF	Anglerfish	5,865	0	0%	6,121	0	0%	4,726	0	0%	5,570	0	5,570	0%
DEU	PLE	Plaice	3,728	2,438	40%	3,826	18,932	83%	3,837	2,145	36%	3,797	7,838	11,636	67%
	РОК	Saithe	11,073	399	3%	9,324	298	3%	7,859	3	0%	9,419	233	9,652	2%
	DAB	Dab	356	6,203	95%	314	10,270	97%	239	6,585	96%	303	7,686	7,988	96%
	COD	Cod	2,870	197	6%	2,224	208	9%	2,134	147	6%	2,409	184	2,593	7%
	HKE	Hake	273	49	15%	291	1,553	84%	384	42	10%	316	548	864	63%
	HAD	Haddock	655	34	5%	577	139	19%	492	53	10%	575	75	650	12%
DNK	PLE	Plaice	9,536	1,587	14%	11,816	637	5%	12,312	589	5%	11,221	938	12,159	8%
	COD	Cod	5,735	371	6%	5,011	193	4%	4,970	366	7%	5,239	310	5,549	6%
	РОК	Saithe	4,859	34	1%	5,238	3	0%	4,309	56	1%	4,802	31	4,833	1%
	HKE	Hake	1,877	534	22%	1,813	468	21%	2,135	260	11%	1,942	421	2,363	18%
	DAB	Dab	524	2,514	83%	608	1,060	64%	541	1,076	67%	558	1,550	2,107	74%
	ANF	Anglerfish	1,414	6	0%	1,310	1	0%	1,373	9	1%	1,366	5	1,371	0%
ENG	PLE	Plaice	11,367	2,479	18%	12,222	1,435	11%	14,038	1,423	9%	12,542	1,779	14,321	12%
	РОК	Saithe	4,102	241	6%	3,753	498	12%	2,251	1,344	37%	3,369	694	4,063	17%
	HAD	Haddock	1,753	163	9%	1,702	437	20%	1,325	39	3%	1,593	213	1,806	12%
	COD	Cod	1,902	117	6%	1,692	225	12%	1,229	53	4%	1,608	132	1,740	8%
	NEP	Norway lobster	1,483	3	0%	1,258	0	0%	1,143	5	0%	1,295	2	1,297	0%
	WHG	Whiting	866	445	34%	955	415	30%	765	373	33%	862	411	1,273	32%
FRA	РОК	Saithe	5,381	4	0%	7,813	5	0%	12,445	0	0%	8,546	3	8,549	0%
	WHG	Whiting	2,280	3,205	58%	9,288	5,494	37%	1,540	2,470	62%	4,370	3,723	8,092	46%
	DAB	Dab	122	2,246	95%	188	10,538	98%	87	1,069	92%	132	4,617	4,750	97%
	HAD	Haddock	208	3	1%	1,593	21	1%	186	7	4%	662	10	672	2%
	PLE	Plaice	187	365	66%	336	705	68%	197	82	29%	240	384	624	62%
	COD	Cod	367	85	19%	601	198	25%	274	22	7%	414	102	516	20%
BEL	PLE	Plaice	3,566	1,069	23%	4,509	3,809	46%	5,023	9,669	66%	4,366	4,849	9,215	53%
	DAB	Dab	331	855	72%	242	3,174	93%	452	4,128	90%	342	2,719	3,061	89%
	SOL	Sole	1,254	127	9%	868	191	18%	602	285	32%	908	201	1,109	18%
	COD	Cod	624	85	12%	646	52	7%	851	18	2%	707	52	759	7%
1	LEM	Lemon sole	334	40	11%	385	60	14%	404	104	21%	374	68	442	15%
1	NEP	Norway lobster	114	12	10%	288	108	27%	364	323	47%	255	148	403	37%
Grand Total			194,950	110,044	36%	198,720	202,270	50%	195,512	111,201	36%	196,394	141,172	337,566	42%

Table 3.1-4 North Sea || demersal fisheries: landings and discards per country, species and year; table sorted in descending order on average catch 2010-2012, top 5 species per country.

REG_GEAF	SPECIES	SPEC_NAME	2010	2010	2010	2011	2011	2011	2012	2012	2012	Avg 2010-	Avg 2010-	Avg	Avg
			Landings	Discards	%DR	Landings	Discards	%DR	Landings	Discards	%DR	2012	2012	2010-	2010-
												Landings	Discards	2012	2012
														Catch	%DR
TR1	РОК	Saithe	33,726	2,044	6%	33,040	2,530	7%	32,943	5,500	14%	33,236	3,358	36,594	9%
	HAD	Haddock	23,676	3,661	13%	22,447	3,962	15%	26,864	1,555	5%	24,329	3,059	27,389	11%
	COD	Cod	19,387	3,586	16%	17,118	1,682	9%	17,642	2,742	13%	18,049	2,670	20,719	13%
	PLE	Plaice	13,755	491	3%	17,249	745	4%	19,798	4,083	17%	16,934	1,773	18,707	9%
	WHG	Whiting	5,967	2,820	32%	6,768	1,026	13%	7,805	714	8%	6,847	1,520	8,367	18%
	HKE	Hake	3,827	1,226	24%	4,430	2,212	33%	5,316	2,607	33%	4,524	2,015	6,539	31%
BT2	PLE	Plaice	34,628	26,658	43%	35,468	21,149	37%	34,138	31,070	48%	34,745	26,293	61,037	43%
	DAB	Dab	4,130	35,527	90%	3,920	48,552	93%	3,166	23,577	88%	3,739	35,885	39,624	91%
	SOL	Sole	10,953	1,479	12%	9,047	1,222	12%	9,619	1,915	17%	9,873	1,539	11,412	13%
	WHG	Whiting	416	2,705	87%	415	917	69%	280	1,657	86%	370	1,760	2,130	83%
	TUR	Turbot	1,393	3	0%	1,621	53	3%	1,740	106	6%	1,585	54	1,639	3%
	COD	Cod	1,790	265	13%	1,304	98	7%	1,012	138	12%	1,369	167	1,535	11%
TR2	DAB	Dab	897	12,686	93%	806	56,273	99%	667	10,521	94%	790	26,493	27,283	97%
	PLE	Plaice	4,950	1,133	19%	5,288	45,937	90%	4,963	2,749	36%	5,067	16,606	21,673	77%
	NEP	Norway lobster	18,615	163	1%	14,514	857	6%	11,315	1,709	13%	14,814	910	15,724	6%
	WHG	Whiting	4,225	6,774	62%	11,422	8,737	43%	3,474	4,456	56%	6,374	6,655	13,029	51%
	HAD	Haddock	2,785	5,014	64%	3,706	5,040	58%	2,021	2,011	50%	2,838	4,022	6,859	59%
	COD	Cod	1,259	1,249	50%	1,093	1,436	57%	653	1,119	63%	1,002	1,268	2,270	56%
GN1	COD	Cod	2,605	14	1%	2,209	113	5%	1,764	59	3%	2,193	62	2,255	3%
	ANF	Anglerfish	1,341		0%	1,519	0	0%	1,614	0	0%	1,491	0	1,491	0%
	PLE	Plaice	1,607	0	0%	1,493	3	0%	929	3	0%	1,343	2	1,345	0%
	SOL	Sole	720		0%	609	0	0%	776	0	0%	702	0	702	0%
	HKE	Hake	407		0%	380	0	0%	424	0	0%	404	0	404	0%
	TUR	Turbot	252	0	0%	323	3	1%	256	11	4%	277	5	282	2%
BT1	PLE	Plaice	2,988		0%	3,945		0%	7,875		0%	4,936	0	4,936	0%
	COD	Cod	308		0%	404		0%	688		0%	466	0	466	0%
	LEM	Lemon sole	207		0%	276	10	4%	354		0%	279	3	283	1%
	DAB	Dab	102		0%	103	196	65%	232		0%	146	65	211	31%
	ANF	Anglerfish	87		0%	112	0	0%	148		0%	116	0	116	0%
	TUR	Turbot	71		0%	71	0	0%	133		0%	92	0	92	0%
Grand Total			197,075	107,499	35%	201,103	202,751	50%	198,610	98,302	33%	198,929	136,184	335,113	41%

Table 3.1-5 North Sea || demersal fisheries: landings and discards per gear, species and year; table sorted in descending order on average catch 2010-2012, top 10 species per gear.

3.1.2 Pelagic and industrial fisheries

The pelagic and industrial fisheries in the North Sea are largely carried out as single species fisheries. The management of pelagic stocks is carried out in conjunction with one or several non-EU coastal states.

- The main catches of pelagic stocks in the North Sea are for herring and mackerel, the main catches of the industrial fishery are for sandeel and sprat.
- Discarding in pelagic fisheries is more sporadic than in demersal fisheries. Pelagic fishing pursues schooling fish, creating hauls with low diversity of species and sizes. Consequently, discard rates typically show high fluctuation (100% or 0% discards). High discard rates occur during 'slippage' events, when the entire (part of a) catch is released. The main reasons for 'slipping' are daily or total quota limitations, illegal sizes, mixtures with unmarketable bycatch and capacity issues with handling the catch (ICES 2013a).
- Discard ratios for the pelagic fisheries are generally low and next to zero for industrial fisheries (table 3.1.6). This is partly due to the absence of specific observer programmes for the pelagic and industrial fisheries in the North Sea.
- Discards of pelagic species often occur in fisheries for other (pelagic) species: herring is discarded in fisheries for mackerel and horse mackerel, mackerel is discarded in fisheries for horse mackerel (Borges et al 2008, Van Overzee et al 2014).
- The estimated discards for horse mackerel in 2010 is doubtful as it is based on fill-in data for the TR1 fleet which would not be expected to discard horse mackerel in the amount suggested here.

Quota

- Substantial quota exchange occurs between countries.
- Industrial species are not included in the quota overview.

Data quality

- 2010 data shows large discard of horse mackerel based on fill-ins.
- Major part of the estimated discards are derived from fill-ins.

Conclusion

Overall, the quality of discard information is low for the pelagic fishery in the North Sea. Estimates of slipping are not (and cannot be) included in the database. For that reason the detailed tables by country and gear are not presented in this section.

		2010	2010	2010	2010	2010	2011	2011	2011	2011	2011	2012	2012	2012	2012	2012	Avg	AVG	AVG	AVG	AVG
																	LAND	DISC	CATCH	%DR	%DQ
SPECIE	ES .	LAND	DISC	Catch	%DR	%DQ	LAND	DISC	Catch	%DR	%DQ	LAND	DISC	Catch	%DR	%DQ					
SAN	Sandeel	255311	0	255311	0%	0%	236909	0	236909	0%	0%	57553	0	57553	0%	0%	183258	0	183258	0%	#DIV/0!
HER	Herring	84853	17	84870	0%	0100%	115653	54	115707	0%	0100%	263173	1380	264554	1%	30%	154560	484	155043	0%	33%
MAC	Mackerel	114997	1182	116179	1%	11%	127189	1537	128726	1%	0%	138095	8589	146684	6%	7%	126760	3769	130530	3%	7%
SPR	Sprat	135898	50	135948	0%	0100%	131740	37	131777	0%	0100%	74430	46	74476	0%	0100%	114023	44	114067	0%	0100%
NOP	Norway pout	71309	5	71314	0%	0 100%	4070	0	4071	0%	100%	225	9	235	4%	0100%	25201	5	25206	0%	0100%
JAX	Horse mackerels	3533	28653	32186	89%	1%	3480	2349	5829	40%	0%	2193	3	2196	0%	0100%	3069	10335	13404	77%	1%
RED	Atlantic redfishes	435	2390	2825	85%	2%	260	267	527	51%	3%	309	0	310	0%	0100%	335	886	1220	73%	2%
BOR	Boarfishes	0	0	0		#N/A	0	0	0		#N/A	1745	0	1745	0%	#N/A	582	0	582	0%	#N/A
WHB	Blue whiting	117	22	138	16%	0 100%	112	0	112	0%	0%	334	56	390	14%	100%	188	26	214	12%	0100%
ANE	Anchovy	0	0	0	0%	0%	0	0	0	100%	100%	27	0	27	0%	100%	9	0	9	2%	0100%
Grand	· 0	666452	32319	698771	5%	2%	619418	4244	623662	1%	2%	538087	10084	548171	2%	11%	607986	15549	623535	2%	4%

Table 3.1-6 North Sea || pelagic and industrial fisheries: landings and discards per species and year and area. Table sorted in descending order on average catch 2010-2012.

Note: %DR refers to the discard : catchratio (discard/catch). %DQ refers to the quality of the discard estimate (the proportion of the discard estimate derived from actual data). The colour coding refers to larger than 66% (green), between 33% and 66% (orange) and below 33% (red).
Table 3.1-7 North Sea || pelagic and industrial fisheries: Quota by species, area and country for 2010, 2011 and 2012.country and year. Source: FIDES. Extraction: 19/11/2013

SPECIES IAC area COUNT INTIAL FINAL % NITIAL FINAL % NITIAL NITAL %	HNAL 2011 846 4321 46442 9530 27687 20342 58000 2714 10 4987 7190 2276 11618 0	% change 2011 -75% 68% -20% -7% -23% 0% 33% -100% 1911% 12% 12% 1% 12%	922 922 41852 64369 21286 57836 53537 117450 4120 8774 573 10871 4189	922 922 17108 88621 17592 53558 117450 4268 117450 4268 11871	% change 2012 -59% -38% -17% -3% 0% 0% 0% 4% -100% 1175%
HER Norwegian waters of ICES division IV (SWE 846 846 0% 846 EU and Norwegian waters of ICES area IV north of 53 ° 30'N . DEU 14147 2455 -83% 17423 BUD ADDED DNK 22497 36837 64% 27707 FRA 9653 8590 -11% 11888 GBR 24223 23097 -5% 29832 NLD 21581 15332 -29% 26579 NOR 47647 47647 0% 58000 SWE 1672 3828 129% 2035 100 7100 2 -100% 7100 DEU 102 5043 2397% 248 109 2254 1099 2010 10092 10092 10092 10092 10092 10092 10092 10092 10092 10092 10092 10092 10092 10092 10092 10092 114% 10092 10092 10092 10092 10092 10092 10092	846 4321 46442 9530 27687 20342 58000 2714 10 4987 7190 2276 11618 0	-75% -75% 68% -20% -7% -23% 0% 33% -100% 1911% 12% 1% 15%	922 41852 64369 21286 57836 53537 117450 4120 8774 573 10871 4189	922 17108 88621 17592 55880 53558 117450 4268 117450 4268 11871	-59% -59% -38% -17% -3% 0% 0% 0% 0% 0% 1175%
HER Norwegian waters of ICES division IV (SWE 846 846 0% 846 EU and Norwegian waters of ICES area IV north of 53 ° 30'N . DEU 14147 2455 -83% 17423 BR 22497 36837 64% 27707 FRA 9653 8590 -11% 11888 GBR 24223 23097 -5% 28832 NLD 21581 15332 -29% 26579 NOR 47647 47647 0% 58000 SWE 1672 3828 129% 2035 ICES zones IVc and VIId BEL 7100 2 -100% 7100 740 DEU 1672 3828 129% 2035 7100 2 248 FRA 5235 6560 25% 6447 GBR 1830 1799 -29% 2254 ICES areas IV , VII and in EU waters of IIa DEU 67 67 0% 82 DNK 13008 13008 0% 15833	846 4321 46442 9530 27687 20342 58000 2714 10 4987 7190 2276 11618 0	-75% 68% -20% -7% -23% 0% 33% -100% 1911% 12% 1% 15%	922 41852 64369 21286 57836 53537 117450 4120 8774 573 10871 4189	922 17108 88621 17592 55880 53558 117450 4268 14 7308 11871	-59% -59% -17% -3% 0% 0% 4% -100% 1175%
HER Norwegian waters of ICES division IV (SWE 846 846 0% 846 south of 62 ° N) EU and Norwegian waters of ICES areas IV north of 53 ° 30'N . DEU 14147 2455 -83% 17423 BV PNK 22497 36837 64% 27707 FRA 9653 8590 -11% 11888 GBR 24223 23097 -5% 29832 NLD 21581 15332 -29% 26579 NOR 47647 47647 0% 58000 SWE 1672 3828 129% 2035 ICES zones IVc and VIId BEL 7100 2 -100% 7100 DEU 202 5043 2397% 248 647 647 GBR 1830 1799 -2% 2254 NLD 8193 9317 14% 10092 ICES areas IV , VII and in EU waters of IIa DEU 67 67 0% 82 DNK 13008 1300	846 4321 46442 9530 27687 20342 58000 2714 10 4987 7190 2276 11618 0	0% -75% 68% -20% -7% -23% 0% 33% -100% 1911% 12% 12% 12% 12% 12%	922 41852 64369 21286 57836 53537 117450 4120 8774 573 10871 4189	922 17108 88621 17592 55880 53558 117450 4268 14 7308 11871	0% -59% 38% -17% -3% 0% 0% 4% -100% 1175%
EU and Norwegian waters of ICES area IV north of 53 ° 30'N. DEU 14147 2455 -83% 17423 BR 22497 36837 64% 27707 FRA 9653 8590 -11% 11888 GBR 24223 23097 -5% 29832 NLD 21581 15332 -29% 26579 NOR 47647 47647 0% 58000 SWE 1672 3828 129% 2035 ICES zones IVc and VIId BEL 7100 2 -100% 7100 DEU 202 5043 2397% 248 FRA 5235 6560 25% 6447 GBR 1830 1799 -2% 2254 NLD 8193 9317 14% 10092 ICES areas IV , VII and in EU waters of Ila BEL 67 67 0% 82 DNK 13008 13008 0% 15833 FRA 67 67 0%	4321 46442 9530 27687 20342 58000 <u>2714</u> 10 4987 7190 2276 <u>11618</u> 0	-75% 68% -20% -7% -23% 0% 33% -100% 1911% 12% 12% 1% 12%	41852 64369 21286 57836 53537 117450 4120 8774 573 10871 4189	17108 88621 17592 55880 53558 117450 4268 14 7308 11871	-59% 38% -17% -3% 0% 0% 4% -100% 1175%
DNK 22497 36837 64% 27707 FRA 9653 8590 -11% 11888 GBR 24223 23097 -5% 29832 NLD 21581 15332 -29% 26579 NOR 47647 47647 0% 58000 SWE 1672 3828 129% 2035 ICES zones IVc and VIId BEL 7100 2 -100% 7100 DEU 202 5043 2397% 248 6447 FRA 5235 6560 25% 6447 GBR 1830 1799 -2% 2254 NLD 8193 9317 14% 10092 ICES areas IV , VII and in EU waters BEL 67 67 0% 82 of Ila DEU 67 67 0% 82 DNK 13008 13008 0% 15833 FRA 67 67 0% 82	46442 9530 27687 20342 58000 2714 10 4987 7190 2276 11618 0	68% -20% -7% -23% 0% 33% -100% 1911% 12% 1% 15%	64369 21286 57836 53537 117450 4120 8774 573 10871 4189	88621 17592 55880 53558 117450 4268 14 7308 11871	38% -17% -3% 0% 0% 4% -100% 1175%
FRA 9653 8590 -11% 11888 GBR 24223 23097 -5% 29832 NLD 21581 15332 -29% 26579 NOR 47647 47647 0% 58000 SWE 1672 3828 129% 2035 ICES zones IVc and VIId BEL 7100 2 -100% 7100 DEU 202 5043 2397% 248 FRA 52235 6560 25% 6447 GBR 1830 1799 -2% 2254 NLD 8133 9317 14% 10092 ICES areas IV , VII and in EU waters of IIa BEL 67 67 0% 82 DNK 13008 13008 0% 15833 FRA 67 67 0% 82 ONK 13008 13008 0% 15833 FRA 67 67 0% 82 DNLD 67 67	9530 27687 20342 58000 2714 10 4987 7190 2276 11618 0	-20% -7% -23% 0% 33% -100% 1911% 1911% 12% 1% 15%	21286 57836 53537 117450 4120 8774 573 10871 4189	17592 55880 53558 117450 4268 14 7308 11871	-17% -3% 0% 0% 4% -100% 1175%
GBR 24223 23097 -5% 29832 NLD 21581 15332 -29% 26579 NOR 47647 47647 0% 58000 SWE 1672 3828 129% 2035 ICES zones IVc and VIId BEL 7100 2 -100% 7100 DEU 202 5043 2397% 248 FRA 5235 6560 25% 6447 GBR 1830 1799 -2% 2254 NLD 8193 9317 14% 10092 ICES areas IV , VII and in EU waters of IIa BEL 67 67 0% 82 DNK 13008 13008 0% 15833 FRA 67 67 0% 82 DNK 13008 13008 0% 15833 FRA 67 67 0% 82 GBR 247 247 0% 301 NLD 67 67 0% 82<	27687 20342 58000 2714 10 4987 7190 2276 11618 0	-7% -23% 0% <u>33%</u> -100% 1911% 12% 1% 15%	57836 53537 117450 4120 8774 573 10871 4189	55880 53558 117450 4268 14 7308 11871	-3% 0% 0% 4% -100% 1175%
INDR 21301 13332 225% 225% 225% 225% 225% 58000 SWE 1672 3828 129% 2035 2035 2035 ICES zones IVc and VIId BEL 7100 2 -100% 7100 DEU 202 5043 2397% 248 FRA 5235 6560 25% 6447 GBR 1830 1799 -2% 2254 ICES areas IV , VII and in EU waters of Ila BEL 67 67 0% 82 DNK 13008 13008 0% 15833 FRA 67 67 0% 82 BR 247 247 0% 301 NLD 67 67 0% 82	20342 58000 2714 10 4987 7190 2276 11618 0	-23% 0% 33% -100% 1911% 12% 1% 15%	53537 117450 4120 8774 573 10871 4189	53558 117450 4268 14 7308 11871	0% 0% 4% -100% 1175%
ICES zones IVc and VIId BEL 1672 3828 129% 2035 ICES zones IVc and VIId BEL 7100 2 -100% 7100 DEU 202 5043 2397% 248 FRA 5235 6500 25% 6447 GBR 1830 1799 -2% 2254 NLD 8193 9317 14% 10092 ICES areas IV , VII and in EU waters BEL 67 67 0% 82 of IIa DEU 67 67 0% 82 DNK 13008 13008 0% 15833 FRA 67 67 0% 82 GBR 247 247 0% 301 NLD 67 67 0% 82	2714 10 4987 7190 2276 11618 0	33% -100% 1911% 12% 1% 15%	4120 8774 573 10871 4189	4268 14 7308 11871	4% -100% 1175%
ICES zones IVc and VIId BEL 7100 2 -100% 7100 DEU 202 5043 2397% 248 FRA 5235 6560 25% 6447 GBR 1830 1799 -2% 2254 NLD 8193 9317 14% 10092 ICES areas IV , VII and in EU waters BEL 67 67 0% 82 of IIa DEU 67 67 0% 82 BR 247 247 0% 301 NLD 67 67 0% 82	10 4987 7190 2276 11618 0	-100% 1911% 12% 1% 15%	8774 573 10871 4189	14 7308 11871	-100% 1175%
DEU 202 5043 2397% 248 FRA 5235 6560 25% 6447 GBR 1830 1799 -2% 2254 NLD 8193 9317 14% 10092 ICES areas IV , VII and in EU waters of IIa BEL 67 67 0% 82 DNK 13008 13008 0% 15833 FRA 67 67 0% 82 GBR 247 247 0% 301 NLD 67 67 0% 82	4987 7190 2276 <u>11618</u> 0	1911% 12% 1% 15%	573 10871 4189	7308 11871	1175%
FRA GBR 5235 (BBR) 6560 (1830) 25% (2254) ICES areas IV , VII and in EU waters of IIa BEL 67 67 0% 82 DEU 67 67 0% 82 DEU 67 67 0% 82 BRA 13008 13008 0% 15833 FRA 67 67 0% 82 BR 247 247 0% 301 NLD 67 67 0% 82	7190 2276 <u>11618</u> 0	12% 1% 15%	10871 4189	11871	
GBR NLD 1830 8193 1799 9317 -2% 14% 2254 10092 ICES areas IV , VII and in EU waters of IIa BEL 67 67 0% 82 DEU 67 67 0% 82 DNK 13008 13008 0% 15833 FRA 67 67 0% 82 GBR 247 247 0% 301 NLD 67 67 0% 82	2276 <u>11618</u> 0	1% 15%	4189		9%
NLD 8193 9317 14% 10092 ICES areas IV , VII and in EU waters of IIa BEL 67 67 0% 82 DEU 67 67 0% 82 DNK 13008 13008 0% 15833 FRA 67 67 0% 82 BBR 247 247 0% 301 NLD 67 67 0% 82	<u>11618</u> 0	15%		4164	-1%
ICES areas IV , VII and in EU waters of IIa DEU 67 67 0% 82 DNK 13008 13008 0% 15833 FRA 67 67 0% 82 GBR 247 247 0% 301 NLD 67 67 0% 82	0	4000/	19261	20863	8%
DEU 67 67 0% 82 DNK 13008 13008 0% 15833 FRA 67 67 0% 82 GBR 247 247 0% 301 NLD 67 67 0% 82		-100%	89	0	-100%
DNK 13008 13008 0% 15833 FRA 67 67 0% 82 GBR 247 247 0% 301 NLD 67 67 0% 82	82	0%	89	89	0%
FRA 67 67 0% 82 GBR 247 247 0% 301 NLD 67 67 0% 82	14643	-8%	17134	17134	0%
GBR 247 247 0% 301 NLD 67 67 0% 82	82	0%	89	89	0%
	211	-30%	326	326	100%
SW/E 64 64 00/ 77	1444	001%	84	178 94	100%
HER Sum 178413 174940 216990	212502	0 /6	422940	417519	0 /6
JAX EU waters of ICES zones IIa , IVa , VI DEU 12243 19524 59% 12142 , VIIa - c , VIIe - k , VIIIabde , EU and international waters of ICES area Vb and international waters of ICES zones XII and XIV	23599	94%	12096	17471	44%
DNK 15691 6550 -58% 15562	7436	-52%	15502	4356	-72%
ESP 16699 2040 -88% 16562	2419	-85%	16498	5510	-67%
FRA 6301 17012 170% 6250	14539	133%	6226	10747	73%
FRO 2000 2000 0% 0	45020	#DIV/0!	0	15007	#DIV/0!
GBR 14700 10002 0% 14043	10939	9% 5%	14587	15997	10%
NLD 49123 66185 35% 48719	64016	31%	40204	71420	47%
PRT 1609 1 -100% 1595	1	-100%	1589	21	-99%
SWE 675 75 -89% 675	983	46%	675	23	-97%
EU waters of ICES areas IVb , IVc and BEL 48 68 42% 47 VIId	54	15%	44	51	16%
DEU 1843 4229 129% 1805	3685	104%	1708	5367	214%
DNK 20875 5107 -76% 20447	14947	-27%	19339	12854	-34%
FRA 1732 2678 55% 1696	2344	38%	1604	1944	21%
GBR 4968 4396 -12% 4866	4700	-3%	4602	3133	-32%
NUD 12568 27257 117% 12310	3550	00%	11642	159//	31%
PRT 44 44 0% 43	13	-70%	41	3330	-98%
SWE 75 75 0% 75	83	11%	75	75	0%
AX Sum 205634 224814 201426	220648		198594	215288	
MAC ICES zones IIIa and IV and EU waters BEL 475 175 -63% 425 of ICES zones IIa , IIIb , IIIc and subdivisions 22-32	37	-91%	421	62	-85%
DEU 495 849 72% 443	789	78%	439	961	119%
DNK 12529 14031 12% 11209	19626	75%	11097	17575	58%
FRA 1496 1511 1% 1339	1829	37%	1326	1932	46%
GBR 1395 1754 26% 1248	1756	41%	1236	1944	57%
	1498	11%	1335	1685	26%
NLD 1507 1072 -29% 1348	169019	0%	89537	167197	87%
NLD 1507 1072 -29% 1348 NOR 103374 103374 0% 169019		-19%	4001	4727	18%
NLD 1507 1072 -29% 1348 NOR 103374 103374 0% 169019 SWE 4485 2990 -33% 4038	3252	1070			

3.2 Area IIIa (Skagerrak)

3.2.1 Skagerrak demersal fisheries

Trawls largely dominate catches in the Skagerrak demersal fisheries. The major fisheries are mixed *Nephrops*/fish trawl fishery (90 mm), Northern prawn (Pandalus) trawls (35-69 mm), demersal trawls targeting mixed fish (120 mm) and a directed *Nephrops* fishery using sorting grid (70-99 mm). Gillnets and longlines represents a stable but relatively small proportion of the gears. New gear regulations were introduced in national legislation 2013 by Denmark and Sweden, which can be expected to reduce the discard ratios presented here.

Quality of discards estimates

Table 3.2.1 highlights how much of the final discard estimates stem from reported data and how much had to be filled in by assuming an average discard ratio from countries that have submitted data for a given metier/fishery. Quality is expressed as %DQ (% discard quality) meaning the amounts of discards that stem from submitted data in relation to the overall estimate of discards.

Average DQ% for the top ten species were very high in the Skagerrak (96%, 99% and 99%) for the three years. Therefore discard estimates are of good quality in this area.

Discards per species

The average discard ratio in the Skagerrak was 23 % for the years 2010-2012 (Table 3.2.2). Discard ratios varied between species from very low percentages (i.e. anglerfish and turbot) to almost ninety percent (whiting).

Average discard ratios for the ten species with the highest catches 2010-2012 varied between countries for some species (Table 3.2.2). This can be attributed to differences in fishing areas, type of fisheries, national quota availability and market situation. An example is plaice where Denmark discards 10% and fishes mainly with large-mesh otter trawls (TR1), while Sweden (33% discard ratio) catches most plaice as by-catch in trawls for Norway lobster (TR2). For other species however, differences between the main fishing countries are generally quite small (cod, northern prawn, Norway lobster and whiting).

For 2010-2012, plaice was the species with highest average catch with a discard ratio of 10%, followed by cod (34 % discards) and Norway lobster (41 % discards). The relatively higher discard ratios for cod in the Skagerrak than in the North Sea is likely a result of that the cod in the Skagerrak predominantly was caught by 90 mm trawls (i.e. trawls with insufficient size selectivity in relation to minimum landing size) and that the Skagerrak is an area with high relative abundance of juvenile cod. Also quota discards has been an issue. The main reason for Norway lobster discards is a mis-match between trawl selectivity and minimum landing size, which is 40 mm carapace length in area IIIa. Discards of Northern prawn (9%) are generally attributed to small individuals with low commercial value.

Other roundfish species like whiting, haddock and hake, showed large differences in terms of discard ratios. For whiting (87%) main explanations are related to selectivity and a low market value, while

for haddock (32%) and hake (17%) most discards can be attributed to catches smaller than MLS. Discards of saithe and pollack appear to be more modest (9% and 1% respectively).

Dab, a species that is not subject to catch limits in the Skagerrak, exhibit high discard ratios due to low commercial value. Other regulated species with relatively small catches are often difficult to quantify precisely in terms of discards. Although some species have a low importance in terms of catch volumes, they can become important choke species under a landing obligation.

Discard ratios per country

The important species caught varied by country and is related to quota availability (Table 3.2.3). Denmark has relatively large catches of most demersal fish species with plaice and cod as the top two. Sweden mainly fish for the two valuable crustaceans northern prawn and Norway lobster, with relatively small catches of demersal fish species. Germany had some catches of saithe, cod and haddock, while the Netherlands fished some plaice in 2010.

Discard ratios per gear

Trawls with a mesh size range of 70-99 mm (TR2) dominated catches in the Skagerrak for 2010-2012 (Table 3.2.4). The reason for this being that in accordance with current technical regulation (Council Reg. 850/98), trawls and seines >90 mm are not restricted in terms of catch composition. Thus, TR2 trawls are used both in fisheries for Norway lobster and for demersal fish. The high discard ratios for cod (51%), haddock (50%) and Norway lobster (41%) is thus much influenced by a mis-match between the selectivity of the gears and minimum landing sizes. Also quota availability is an issue particularly for cod. Note however that new demersal gear regulations with a minimum mesh size of 120 mm (or gears with a proven equivalent roundfish selectivity) were introduced in national legislation 2013 by Denmark and Sweden.

Large mesh otter trawls (TR1) are predominantly used to catch plaice in the Skagerrak. Also some demersal fish like cod, haddock and saithe is caught. Discard ratios are, as expected, lower compared to TR2 but are still significant for cod (27%).

The fishery for northern prawn (OTTER) exhibits relatively high discard ratios (but relatively low absolute catch) for saithe, cod, haddock and whiting. Although the fishery is quite extensive and is performed with gears of poor size selectivity for fish (mesh size 35-45 mm), the relatively small amounts of discards can most likely be attributed to that the fishery takes place in the deeper parts of the Skagerrak where the abundance of juvenile gadoids normally are low. Also the widespread voluntary uptake of sorting grids in the northern prawn fishery may have reduced unwanted catch.

Lowest discard ratios were reported for fisheries with gill nets (GN1). For large meshed beam trawls (BT1) no discard data was reported.

		2010	2010	2010	2010	2010	2011	2011	2011	2011	2011	2012	2012	2012	2012	2012	Avg	AVG	AVG	AVG	AVG
																	LAND	DISC	CATCH	%DR	%DQ
SPECIE	S	LAND	DISC	Catch	%DR	%DQ	LAND	DISC	Catch	%DR	%DQ	LAND	DISC	Catch	%DR	%DQ					
PLE	Plaice	8162	722	8884	8%	93%	7309	839	8148	10%	100%	6942	995	7937	13%	99%	7471	852	8323	10%	98%
COD	Cod	3471	1693	5164	33%	98%	3262	1940	5202	37%	99%	3658	1763	5420	33%	98%	3464	1798	5262	34%	98%
NEP	Norway lobster	2631	1884	4516	42%	0100%	2283	1458	3741	39%	0100%	2235	1599	3834	42%	100%	2383	1647	4030	41%	100%
РОК	Saithe	4743	575	5318	11%	96%	3483	383	3865	10%	90%	2368	117	2486	5%	95%	3531	358	3890	9%	94%
PRA	Northern prawn	2600	115	2715	4%	0 100%	2756	271	3027	9%	0100%	2517	405	2922	14%	0100%	2624	264	2888	9%	0100%
HAD	Haddock	1347	721	2068	35%	83%	2006	1233	3238	38%	99%	2368	679	3047	22%	98%	1907	878	2785	32%	94%
DAB	Dab	484	256	739	35%	88%	453	579	1031	56%	97%	564	501	1065	47%	99%	500	445	945	47%	96%
HKE	Hake	376	98	474	21%	99%	437	34	471	7%	0100%	324	108	432	25%	89%	379	80	459	17%	95%
LEM	Lemon sole	301	63	364	17%	94%	217	23	240	9%	99%	440	47	487	10%	99%	319	44	364	12%	97%
WHG	Whiting	54	381	435	88%	96%	46	357	404	89%	0100%	34	141	175	80%	97%	45	293	338	87%	98%
ANF	Anglerfish	320	1	321	0%	99%	278	1	279	0%	99%	349	2	351	1%	0100%	316	1	317	0%	100%
POL	Pollack	302	4	306	1%	97%	169	3	172	2%	82%	213	0	213	0%	79%	228	2	230	1%	91%
RNG	Roundnose grenadie	0	8	8	98%	0100%	0	452	452	100%	0100%	0	2	2	90%	0100%	0	154	154	100%	100%
LIN	Ling	73	66	139	47%	97%	76	0	77	0%	0100%	84	5	88	5%	98%	78	24	101	23%	97%
TUR	Turbot	41	0	42	1%	0100%	48	2	51	5%	97%	145	5	149	3%	95%	78	2	81	3%	96%
SOL	Sole	50	0	50	0%	98%	59	3	62	5%	0100%	91	1	92	1%	0100%	67	1	68	2%	100%
USK	Tusk	3	0	3	7%	100%	2	0	2	1%	100%	2	0	2	0%	0%	2	0	2	3%	100%
Grand	Total	24960	6589	31549	21%	96%	22885	7577	30462	25%	99%	22334	6369	28703	22%	99%	23393	6845	30238	23%	98%

Table 3.2-1 Skagerrak || demersal fisheries: landings and discards per species and year and area. Table sorted in descending order on average catch 2010-2012.

Note: %DR refers to the discard : catchratio (discard/catch). %DQ refers to the quality of the discard estimate (the proportion of the discard estimate derived from actual data). The colour coding refers to larger than 66% (green), between 33% and 66% (orange) and below 33% (red).

SPECIES	SPEC_NAME	COUNTRY	2010	2010	2010	2011	2011	2011	2012	2012	2012	Avg 2010-	Avg 2010-	Avg	Avg
			Landings	Discards	%DR	Landings	Discards	%DR	Landings	Discards	%DR	2012	2012	2010-	2010-
												Landings	Discards	2012	2012
														Catch	%DR
PLE	Plaice	DNK	6,498	577	8%	7,115	754	10%	6,767	948	12%	6,793	760	7,553	10%
		NLD	1,530	51	3%	5		0%	10		0%	515	17	532	3%
		SWE	122	92	43%	176	83	32%	152	46	23%	150	73	223	33%
		DEU	13	1	10%	13	2	12%	12	2	13%	13	2	14	12%
COD	Cod	DNK	2,949	1,515	34%	2,701	1,770	40%	2,820	1,448	34%	2,823	1,578	4,401	36%
		SWE	440	149	25%	502	158	24%	479	282	37%	474	196	670	29%
		DEU	57	25	31%	60	12	16%	359	33	8%	159	23	182	13%
		NLD	24	4	15%			0%			0%	8	1	9	15%
NEP	Norway lobster	DNK	1,971	1,492	43%	1,790	1,095	38%	1,511	977	39%	1,757	1,188	2,945	40%
		SWE	658	391	37%	492	362	42%	724	622	46%	625	458	1,083	42%
		DEU	2	1	40%	2	1	34%	0	0	0%	1	1	2	37%
POK	Saithe	DNK	3,667	115	3%	2,037	329	14%	1,604	49	3%	2,436	164	2,600	6%
		SWE	701	455	39%	510	19	4%	380	63	14%	530	179	709	25%
		DEU	376	6	1%	935	35	4%	384	5	1%	565	15	580	3%
PRA	Northern prawn	SWE	1,476	58	4%	1,487	167	10%	1,290	268	17%	1,418	164	1,582	10%
		DNK	1,123	58	5%	1,269	104	8%	1,227	137	10%	1,206	99	1,306	8%
HAD	Haddock	DNK	1,161	510	31%	1,709	1,105	39%	1,979	608	24%	1,616	741	2,357	31%
		SWE	119	197	62%	194	116	37%	208	60	22%	174	124	298	42%
		DEU	67	14	17%	103	12	10%	181	12	6%	117	12	129	10%
DAB	Dab	DNK	357	184	34%	441	512	54%	558	428	43%	452	374	826	45%
		SWE	1	43	97%	2	52	97%	1	70	99%	1	55	56	98%
		NLD	122	28	19%			0%	1		0%	41	9	50	19%
		DEU	3	1	25%	10	14	59%	5	4	43%	6	6	12	52%
HKE	Hake	DNK	332	85	20%	404	20	5%	295	98	25%	344	68	411	16%
		SWE	40	13	25%	31	14	31%	23	9	29%	31	12	44	28%
		DEU	1	0	12%	2	0	2%	6	1	8%	3	0	3	8%
		NLD	2	0	4%			0%			0%	1	0	1	4%
LEM	Lemon sole	DNK	260	41	13%	208	19	8%	425	35	8%	298	32	329	10%
		SWE	12	20	63%	7	4	35%	11	11	49%	10	12	21	54%
		NLD	27	3	9%			0%			0%	9	1	10	9%
		DEU	2	0	11%	2	0	8%	4	0	8%	3	0	3	9%
WHG	Whiting	DNK	33	258	89%	32	226	88%	26	117	82%	31	200	231	87%
		SWE	21	119	85%	14	131	90%	7	22	75%	14	90	104	87%
		DEU	1	4	89%	0	1	84%	1	2	78%	0	3	3	85%
Grand To	otal		24.169	6.509	21%	22.252	7.115	24%	21.450	6.355	23%	22.624	6.660	29.283	23%

Table 3.2-2 Skagerrak || demersal fisheries: landings and discards per species, country and year. Table sorted in descending order on average catch 2010-2012, top 10 species.

Table 3.2-3 Skagerrak || demersal fisheries: landings and discards per country, species and year. Table sorted in descending order on average catch 2010-2012, top 4 countries and top 6 species per country.

COUNTRY	SPECIES	SPEC_NAME	2010	2010	2010	2011	2011	2011	2012	2012	2012	Avg 2010-	Avg 2010-	Avg	Avg
			Landings	Discards	%DR	Landings	Discards	%DR	Landings	Discards	%DR	2012	2012	2010-	2010-
												Landings	Discards	2012	2012
														Catch	%DR
DNK	PLE	Plaice	6,498	577	8%	7,115	754	10%	6,767	948	12%	6,793	760	7,553	10%
	COD	Cod	2,949	1,515	34%	2,701	1,770	40%	2,820	1,448	34%	2,823	1,578	4,401	36%
	NEP	Norway lobster	1,971	1,492	43%	1,790	1,095	38%	1,511	977	39%	1,757	1,188	2,945	40%
	POK	Saithe	3,667	115	3%	2,037	329	14%	1,604	49	3%	2,436	164	2,600	6%
	HAD	Haddock	1,161	510	31%	1,709	1,105	39%	1,979	608	24%	1,616	741	2,357	31%
	PRA	Northern prawn	1,123	58	5%	1,269	104	8%	1,227	137	10%	1,206	99	1,306	8%
SWE	PRA	Northern prawn	1,476	58	4%	1,487	167	10%	1,290	268	17%	1,418	164	1,582	10%
	NEP	Norway lobster	658	391	37%	492	362	42%	724	622	46%	625	458	1,083	42%
	РОК	Saithe	701	455	39%	510	19	4%	380	63	14%	530	179	709	25%
	COD	Cod	440	149	25%	502	158	24%	479	282	37%	474	196	670	29%
	HAD	Haddock	119	197	62%	194	116	37%	208	60	22%	174	124	298	42%
	PLE	Plaice	122	92	43%	176	83	32%	152	46	23%	150	73	223	33%
DEU	РОК	Saithe	376	6	1%	935	35	4%	384	5	1%	565	15	580	3%
	COD	Cod	57	25	31%	60	12	16%	359	33	8%	159	23	182	13%
	HAD	Haddock	67	14	17%	103	12	10%	181	12	6%	117	12	129	10%
	PLE	Plaice	13	1	10%	13	2	12%	12	2	13%	13	2	14	12%
	DAB	Dab	3	1	25%	10	14	59%	5	4	43%	6	6	12	52%
	POL	Pollack	7	0	1%	7	0	0%	21	0	0%	12	0	12	0%
NLD	PLE	Plaice	1,530	51	3%	5		0%	10		0%	515	17	532	3%
	DAB	Dab	122	28	19%			0%	1		0%	41	9	50	19%
	LEM	Lemon sole	27	3	9%			0%			0%	9	1	10	9%
	COD	Cod	24	4	15%			0%			0%	8	1	9	15%
	ANF	Anglerfish	6	0	0%			0%			0%	2	0	2	0%
	TUR	Turbot	5		0%			0%			0%	2	0	2	0%
Grand To	tal		23,123	5,741	20%	21,113	6,136	23%	20,114	5,562	22%	21,450	5,813	27,263	21%

REG_GEAR	SPECIES	SPEC_NAME	2010	2010	2010	2011	2011	2011	2012	2012	2012	Avg 2010-	Avg 2010-	Avg	Avg
			Landings	Discards	%DR	Landings	Discards	%DR	Landings	Discards	%DR	2012	2012	2010-	2010-
												Landings	Discards	2012	2012
														Catch	%DR
TR2	NEP	Norway lobster	2,376	1,686	42%	2,160	1,377	39%	2,030	1,529	43%	2,189	1,531	3,719	41%
	COD	Cod	1,197	1,089	48%	1,234	1,457	54%	1,254	1,343	52%	1,228	1,296	2,525	51%
	POK	Saithe	2,849	174	6%	1,755	290	14%	1,331	99	7%	1,979	188	2,166	9%
	HAD	Haddock	382	486	56%	616	888	59%	961	555	37%	653	643	1,296	50%
	PLE	Plaice	687	131	16%	1,033	164	14%	976	163	14%	899	152	1,051	14%
	HKE	Hake	218	79	27%	282	28	9%	216	84	28%	239	64	302	21%
TR1	PLE	Plaice	5,772	581	9%	5,316	669	11%	5,093	810	14%	5,393	687	6,080	11%
	COD	Cod	1,160	549	32%	1,017	404	28%	1,376	347	20%	1,184	433	1,617	27%
	HAD	Haddock	936	217	19%	1,350	250	16%	1,315	113	8%	1,200	193	1,393	14%
	POK	Saithe	1,265	32	2%	837	65	7%	479	13	3%	860	37	897	4%
	DAB	Dab	383	164	30%	370	489	57%	391	330	46%	381	327	708	46%
	LEM	Lemon sole	211	31	13%	124	11	8%	254	22	8%	196	21	218	10%
OTTER	PRA	Northern prawr	2,595	115	4%	2,649	271	9%	2,385	405	15%	2,543	264	2,807	9%
	POK	Saithe	523	369	41%	497	23	5%	404	4	1%	475	132	607	22%
	COD	Cod	226	38	14%	196	63	24%	205	59	22%	209	53	263	20%
	HAD	Haddock	16	19	55%	23	95	80%	70	12	14%	36	42	78	54%
	WHG	Whiting	4	28	88%	5	106	95%	1	4	74%	3	46	50	93%
	ANF	Anglerfish	22	0	0%	23	0	0%	48	0	0%	31	0	31	0%
GN1	COD	Cod	761	16	2%	669	14	2%	640	12	2%	690	14	704	2%
	PLE	Plaice	227	3	1%	488	4	1%	261	15	5%	325	7	332	2%
	POL	Pollack	161	0	0%	87	3	3%	100	0	0%	116	1	117	1%
	POK	Saithe	77	1	1%	40	2	5%	14	1	6%	44	1	45	3%
	HKE	Hake	51	1	1%	47	0	0%	11	0	0%	36	0	37	1%
	ANF	Anglerfish	15	0	0%	13	0	0%	44	0	0%	24	0	24	0%
BT1	PLE	Plaice	714		0%	205		0%	432		0%	450	0	450	0%
	DAB	Dab	27		0%	3		0%	17		0%	16	0	16	0%
	COD	Cod	17		0%	8		0%	11		0%	12	0	12	0%
	TUR	Turbot	4		0%	3		0%	14		0%	7	0	7	0%
	LEM	Lemon sole	3		0%	2		0%	6		0%	4	0	4	0%
	ANF	Anglerfish	5		0%	1		0%	3		0%	3	0	3	0%
Grand Tota	il		22,883	5,806	20%	21,052	6,672	24%	20,342	5,918	23%	21,426	6,132	27,558	22%

Table 3.2-4 Skagerrak || demersal fisheries: landings and discards per gear, species and year. Table sorted in descending order on average catch 2010-2012, top 10 species per gear.

3.2.2 Skagerrak pelagic and industrial fisheries

The pelagic and industrial fisheries in the Skagerrak are mainly carried out as single species fisheries, with Denmark and Sweden as dominating EU- countries. Herring and sprat caught with pelagic trawls and purse seines are the most important species, but for some years industrial catches of sandeel can be of significance. In addition, a small-scale mackerel fishery with hooks and drift-net is also performed in the Skagerrak.

- Discard estimates are in general uncertain. No observer programmes are conducted on the pelagic and industrial fisheries.
- Slipping in pelagic fisheries is known and can in some season and areas be substantial.
- Discards of Norway pout, blue whiting and mackerel stems from unwanted catches in demersal trawl fisheries (predominantly the fishery for Northern prawn)

Data quality

- Discards of Norway Pout and blue whiting are from the observer programme for demersal fisheries. These discard ratios are of good quality (100% DQ).
- The 2010 data shows large discard of herring based on fill-ins. This estimate is not reliable.
- For the main pelagic species fished, the major parts of the estimated discards are derived from fill-ins.

Conclusion

Although the discards ratios appear to be low in the pelagic fishery in the Skagerrak, estimates of slipping are not (and cannot be) included in the database. For that reason the detailed tables by country and gear are not presented here.

		2010	2010	2010	2010	2010	2011	2011	2011	2011	2011	2012	2012	2012	2012	2012	Avg	AVG	AVG	AVG		AVG
																	LAND	DISC	CATCH	%DR	9	6DQ
SPECIE	S	LAND	DISC	Catch	%DR	%DQ	LAND	DISC	Catch	%DR	%DQ	LAND	DISC	Catch	%DR	%DQ						
HER	Herring	21349	13307	34656	38%	1%	12001	355	12356	3%	100%	18361	19	18380	0%	0100%	17237	4560	21797	21%		4%
SAN	Sandeel	9915	0	9915	0%	#N/A	17	0	17	0%	#N/A	1416	0	1416	0%	#N/A	3783	0	3783	0%	#	ŧN/A
SPR	Sprat	4459	0	4459	0%	0%	4477	0	4477	0%	0100%	1349	0	1349	0%	0100%	3428	0	3429	0%	\bigcirc	29%
NOP	Norway pout	61	305	366	83%	0100%	2	441	443	100%	0 100%	118	155	273	57%	0100%	60	300	361	83%		93%
MAC	Mackerel	106	0	106	0%	0100%	152	140	292	48%	0%	136	146	283	52%	1%	131	96	227	42%		27%
WHB	Blue whiting	19	315	334	94%	0100%	1	72	72	99%	0100%	17	170	187	91%	0100%	12	185	198	94%		97%
JAX	Horse mackerels	1	1	2	66%	100%	0	1	1	94%	100%	0	0	0	43%	0100%	0	1	1	74%		97%
Grand	Total	35910	13929	49838	28%	5%	16650	1009	17658	6%	86%	21399	491	21889	2%	70%	24653	5143	29795	17%		11%

Table 3.2-5 Skagerrak || pelagic and industrial fisheries: landings and discards per species and year and area. Table sorted in descending order on average catch 2010-2012.

Note: **%DR** refers to the discard : catchratio (discard/catch). **%DQ** refers to the quality of the discard estimate (the proportion of the discard estimate derived from actual data). The colour coding refers to larger than 66% (green), between 33% and 66% (orange) and below 33% (red).

3.3 Area VIId (Eastern Channel)

3.3.1 Eastern Channel demersal and pelagic fisheries

In the Eastern Channel, more than 400 small (<12 m long) beam- and otter trawlers and netters predominate the fleets. Beam trawlers target mainly sole and otter trawlers other demersal species. Large otter trawlers operating further offshore target cod, whiting, plaice, mackerel, gurnards and cuttlefish.

Whiting, plaice and sole dominate the catches (Table 3.3-1). Between 10-15% of dab, plaice and lemon sole catches are being discarded. In 2010, the highest discard:catch ratio was observed for dab with 64%. For many of the demersal species discard:catch ratios varied by in some cases an order of magnitude between years. Overall, only small amounts of round fish (cod, haddock, saithe, hake) were caught, indicating that these were not the main target species.

The main landings for pelagic species are herring and horse mackerel. For these species almost no discard information was available (Table 3.3-2).

Conclusion

The quality of the discard information in the Eastern Channel is generally low. The two species with the highest discard ratios in the demersal fishery (whiting and plaice) are to a large extent reliant on fill-ins for unsampled metiers. Because the quality of the discard information was low, the only tables presented in this report refer to the overall landings and discards. More detailed tables by country or gear do not provide reliable additional information.

		2010	2010	2010	2010	2010	2011	2011	2011	2011	2011	2012	2012	2012	2012	2012	Avg	AVG	AVG	AVG	AVG
																	LAND	DISC	CATCH	%DR	%DQ
SPECI	ES	LAND	DISC	Catch	%DR	%DQ	LAND	DISC	Catch	%DR	%DQ	LAND	DISC	Catch	%DR	%DQ					
WHG	Whiting	5492	599	6091	10%	19%	6294	61	6355	1%	29%	3341	946	4287	22%	5%	5043	535	5578	10%	11%
PLE	Plaice	2804	809	3613	22%	0 47%	3082	607	3690	16%	0 70%	2791	67	2858	2%	20%	2892	494	3387	15%	55%
SOL	Sole	2657	156	2813	6%	78%	3180	94	3274	3%	71%	3029	2	3031	0%	5%	2955	84	3039	3%	75%
DAB	Dab	980	1707	2687	64%	9%	1228	364	1592	23%	9 41%	998	285	1283	22%	53%	1069	785	1854	42%	9%
COD	Cod	1001	14	1015	1%	56%	981	402	1382	29%	1%	805	22	827	3%	11%	929	146	1075	14%	4%
LEM	Lemon sole	176	14	190	8%	96%	420	51	472	11%	89%	397	88	485	18%	96%	331	51	382	13%	94%
TUR	Turbot	219	55	274	20%	939%	275	1	277	1%	73%	290	1	292	0%	71%	262	19	281	7%	941%
POL	Pollack	148	0	148	0%	99%	185	0	185	0%	0%	107	0	107	0%	0%	147	0	147	0%	99%
ANF	Anglerfish	152	18	170	10%	98%	143	7	150	4%	97%	87	18	105	17%	96%	127	14	141	10%	97%
BLL	Brill	134	0	134	0%	0100%	121	2	122	1%	0 100%	103	1	104	1%	100%	119	1	120	1%	0100%
HKE	Hake	28	0	28	0%	0%	60	0	60	0%	0%	13	0	13	0%	0%	34	0	34	0%	#DIV/0!
HAD	Haddock	14	0	14	0%	0%	36	0	36	0%	0%	17	0	17	0%	0%	23	0	23	0%	#DIV/0!
POK	Saithe	17	0	17	0%	#N/A	14	0	14	0%	#N/A	4	0	4	0%	#N/A	11	0	11	0%	#N/A
LIN	Ling	8	0	8	0%	#N/A	10	0	10	0%	#N/A	12	0	12	0%	#N/A	10	0	10	0%	#N/A
LEZ	Megrims	14	0	14	0%	#N/A	3	0	3	0%	#N/A	1	0	1	0%	#N/A	6	0	6	0%	#N/A
NEP	Norway lobster	4	0	4	0%	#N/A	8	0	8	0%	#N/A	1	0	1	0%	#N/A	4	0	4	0%	#N/A
Grand	l Total	13849	3372	17221	20%	25%	16042	1589	17631	9%	45%	11997	1431	13428	11%	22%	13963	2131	16093	13%	29%

Table 3.3-1 Eastern Channel || demersal fisheries: landings and discards per species and year and area, table sorted in descending order on average catch 2010-2012.

Table 3.3-2 Eastern Channel || pelagic fisheries: landings and discards per species and year and area

		2010	2010	2010	2010	2010	2011	2011	2011	2011	2011	2012	2012	2012	2012	2012	Avg	AVG	AVG	AVG	AVG
																	LAND	DISC	CATCH	%DR	%DQ
SPECIE	S	LAND	DISC	Catch	%DR	%DQ	LAND	DISC	Catch	%DR	%DQ	LAND	DISC	Catch	%DR	%DQ					
HER	Herring	18679	35	18714	0%	32%	18304	152	18457	1%	60%	34356	994	35351	3%	61%	23780	394	24174	2%	60%
JAX	Horse mackerels	21181	0	21181	0%	0%	19189	130	19319	1%	69%	19382	71	19453	0%	61%	19917	67	19984	0%	66%
MAC	Mackerel	4045	30902	34947	88%	1%	7678	1097	8776	13%	1%	4869	1972	6840	29%	0%	5531	11324	16854	67%	1%
Grand	Total	43906	30937	74843	41%	1%	45210	1380	46590	3%	14%	58608	3037	61645	5%	22%	49241	11785	61026	19%	3%

Note: **%DR** refers to the discard : catchratio (discard/catch). **%DQ** refers to the quality of the discard estimate (the proportion of the discard estimate derived from actual data). The colour coding refers to larger than 66% (green), between 33% and 66% (orange) and below 33% (red).

4 Management measures to mitigate discards

4.1 Generic measures to manage discards

In 2007 a gear expert group from the EU and Norway identified possible technical conservation measures to reduce discards of fish below marketable size, protected species (e.g. cod) and species of low commercial value (e.g. Norway pout in shrimp fisheries). Around 15 fisheries were identified as potentially problematic with respect to discarding or due to the use of human consumption species for reduction to fish meal or oil. The findings of this group were updated in March 2009 at a second meeting held in Ålesund. This report was reviewed and updated at two technical meetings on the harmonisation of technical measures between EU and Norway in 2013 (distributed by EU Council secretariat on 6 September 2013). The latter report provides a comprehensive overview of discard problems and gear adaptations in relation to the stocks with a joint interest between EU and Norway.

- 1. Fishing in the Skagerrak by trawl/seine nets with 70-89 mm square-mesh codends and sorting grid with 35 mm bar spacing, and trawl/seine net fishery with 90-99 mm. Following the recommendations from a technical working group EU and Norway have agreed to increase the minimum mesh size to 120 mm or a gear with same level of selectivity. The mesh size is compulsory in Norwegian waters in the Skagerrak from January 1st 2013 and through national legislation for Danish and Swedish vessels from February 1st 2014.
- 2. **Trawl/seine net fishery with 80-89 mm.** Discarding of cod, haddock, plaice and whiting are reported in the *Nephrops* trawl/seine net fishery with 80-99 mm. Significant progress has been made in England to reduce discarding in these fisheries. Discarding of over quota fish, particularly cod is reported by ICES as a problem. Discarding of undersize *Nephrops* occurs but is not considered a major problem except, according to ICES in the Firth of Forth fishery. Discarding of undersized whiting in the directed fisheries for this species remains a problem. There was evidence of high-grading in this fishery and over quota catches of cod. Discarding in the seine net fisheries is reported to be low based on limited information.
- 3. **Trawl/seine net fishery with 100-110 mm.** A targeted plaice trawl fishery by Danish and Dutch vessels and a German/French/Norwegian saithe fishery in the northern North Sea with 100-119 mm occurs. Discards in the other fisheries are largely unknown, although are not thought to be significant. Discards in the directed saithe fishery are reported to be low, even with 110mm. Increasing the mesh size to 120mm would result in a considerable loss of target species, a.o. lemon sole.
- 4. Trawl/seine net fishery with ≥120 mm codend. This category constitutes the major mixed demersal fisheries in the North Sea and involves principally vessels from England and Denmark but also smaller numbers of vessels from France, Netherlands and Belgium as well as a few Norwegian vessels. There are trawl and Danish seine/pair seine fisheries for mixed demersal species such as cod, haddock, plaice and whiting as well in deeper waters on the shelf edge targeting anglerfish, megrim, cod, haddock, hake and saithe. Data suggest that discard problems are mostly restricted to quota or market-driven discarding, principally of

cod. However, discards of hake have increased in recent years as the catchability seems to have increased in the North Sea out of line with the TAC.

- 5. Beam trawl with 80-89 mm codend. This is a beam trawl fishery targeting primarily sole, with a bycatch of plaice and other species of flatfish. The beam trawls are traditionally rigged with chain-mats ground-gear. EU vessels from Netherlands, Belgium, England and Germany are involved. Discarding of plaice, dab and whiting remain a problem in this fishery. Up to 40% (in weight) of plaice are discarded and up to 100% of whiting. In recent years dab discards are also reported to be very high in the Dutch fishery and in fact the industry has identified dab as a potential "choke" species in this fishery on introduction of the discard ban. Discarding of cod has been a problem in the past but has been insignificant in recent years. For the Belgian beam trawlers fishing for sole with 80mm mesh size, data for all areas (not only in the North Sea) for the period 2008-2011, show mean discard figures of 25% for plaice and 6% for sole. The use of "codend blinders" which exacerbated the discard problem seems to have decreased or disappeared due to the introduction of the OMEGA mesh gauge.
- 6. Beam trawl with 100-119 mm codend. This is a beam trawl fishery using tickler chain and chain matrix trawls in a small area in the central North Sea on the Southern Dogger Bank. New discard data were generated for the Dutch fleet in 2012 and showed discarding of plaice to be much less than the 80-89 mm beam trawl due to the larger mesh-size. This data shows that dab discards to be higher than plaice.
- 7. Beam trawl with ≥120 mm codend. This is a beam trawl fishery for plaice involving Dutch, Belgium and German vessels using tickler chain and chain matrix gear. The fishery is concentrated in the northern North Sea, north of 56°N. No discard data available but discards are expected to be low in comparison to the small mesh beam trawl fishery for sole.
- 8. Pandalus trawl fishery. Involves vessels from Denmark, Norway and Sweden in the north-eastern North Sea and the Skagerrak. In recent years the fishery has been concentrated in the Skagerrak and the Norwegian Deep. The minimum mesh size is 35mm and the use of sorting grids was made mandatory in the Skagerrak in 2013. There is a bycatch of blue whiting and Norway pout in the fishery but given the small size of these species such bycatch is unavoidable. To allow retention of fish bycatch (mainly cod, saithe and anglerfish) the use of a secondary size selective device e.g. large mesh tunnel or codend of 120mm square mesh is permitted in combination with the grid provided a vessel has quota for such bycatch. In the North Sea the use of the grid is still optional in the Pandalus fishery. The use of sorting grids in this fishery is a positive development and will almost totally eliminate discarding of fish species that has been a problem in the past in the Pandalus fishery. Further improvements in selectivity are not considered necessary.
- 9. Norway pout fishery. Conducted by Danish and Norwegian vessels. Most of the fishery takes place at depths between 100 to 200 m along the shallower western/southern slope of the Norwegian Deep and at the Fladen Grounds. The fishery is seasonal with the Norwegian fishery concentrated in the summer months and the EU fishery (Danish fishery) on the Fladens concentrated later in the autumn. Since 2010 most vessels are required to use a sorting grid in Norwegian waters with a maximum bar spacing of 40mm while under national legislation all Danish vessels are o required to use sorting grids with a bar spacing of 35mm. With the introduction of the sorting grid into this fishery the bycatch problems in these fisheries have been solved regarding larger fish. Bycatches of herring are observed in the

Danish fishery but these are depth and season dependent so spatial avoidance is possible. It should be noted that in the EU all registered bycatch is counted against the herring bycatch quotas.

- 10. **Sandeel fishery.** Takes place mainly in the shallow areas of the North Sea. The bulk of the catch is taken by mainly Danish, Swedish and Norwegian vessels but there also vessels from English, Dutch and a Lithuanian vessel involved. Mesh sizes <16 mm are required to catch sandeel and may be used in EU waters from 1 March to 31 October and in Norwegian waters from 23 April to 23 June. Discarding is not considered to be a problem in the sandeel fishery, and by-catches are in general very small. However, bycatches of small mackerel early in the season have been observed, but these are depth and season dependent so spatial avoidance is possible. In such cases misreporting can occur.
- 11. **Pelagic Fisheries** for herring, mackerel and horse mackerel. Unaccounted mortality due to "slipping" is a long-standing problem although the actual extent is largely unknown. The main reason for slipping is when catches contain large percentages of small pelagic species with low market value, although it can also be as a result of catches being mixed or for practicality reasons when there is insufficient storage space on board a vessel to accommodate the entire catch from an individual haul. In pelagic trawls slipped fish are thought to have a much higher mortality rate leading to research in several countries into the use of sorting grids in pelagic trawls. Spatial and temporal measures using fishermen's knowledge of the movement of pelagic stocks (in particular mackerel) may be appropriate. Unwanted bycatch of other species such as cod, whiting and saithe are also reported in pelagic trawl and purse seine fisheries although no reliable estimates of the extent are available.

4.2 Drivers and incentives for discarding

It was observed that most measures were effort driven and therefore related to cod (avoidance). Relatively few measures are taken as yet with a view to solve other discard problems, that may arise from either low prices (high grading, for instance in dab, a control issue) or too restrictive quota (possible future choke species e.g. rays, hake). There is also the issue of catches of sharks (e.g. unintentional large catches of spurdog that may have low survival rates).

The choice of what to discard may be driven by regulations, market forces, and onboard capacity to store and/or handle the catch. Eventually, it will be a decision of the individual vessel operator or crew. For example, catch composition rules or quota regulations may dictate that catches despite their marketable size and value have to be discarded, because they exceed a given quantity. Another wasteful form of discarding is 'highgrading' where marketable catches are discarded only to retain n more valuable catch. However, the exact reasons to discard are typically not recorded but would be beneficial to know in order to devise appropriate mitigation strategies to reduce discarding.

As part of the European Common Fisheries Policy Reform, the elimination or at least reduction of discarding has been prescribed in article 15. From monitoring data under the Data Collection Framework, it is known how many different species are caught and in what quantities and sizes. These data together with species-specific minimum length restrictions were used in a recent study by Catchpole *et al.* (2013) to infer the main causes for discarding.

"The first category includes fish discarded below the MLS. The inferred driver for these discards is the mismatch between the selectivity of the fishing practices and the minimum length at which these fish can legally be landed. This driver is called "under MLS".

The second category includes fish discarded below a minimum marketable size (MMS) together with species that have no market outlet (non-commercial species). The MMS was defined as the minimum length at which fish were landed; this category includes only species for which there was no MLS. To account for variability in marketing opportunities and practices, the MMS was calculated for each gear–area and year combination. The driver behind these discards was inferred to be a mismatch between the selectivity of fishing practice and the market demand for these fish. This driver is named "no market".

The third category of discards included species with no associated quota and discarded above either the MMS or the MLS. Therefore, this category consisted entirely of commercial species. These fish, at the length discarded, were also intermittently landed by some fishers. The inferred reasons for discarding these fish included inconsistencies in market opportunities, inconsistent sorting, poor condition of the fish, and/or damage to the fish. This category, named "inconsistencies", represents the amount of discards attributed to inconsistencies in sorting and marketing opportunities.

The fourth category of discards is named "quota restriction" and describes fish with an associated quota which were discarded above the length normally landed. This length was taken as the MLS usually but in instances where species—area combinations had associated quotas but no MLS, the length normally landed was taken as the minimum length landed (MMS). The "quota restriction" category describes discards generated through fishers' responses to quota restrictions and includes highgraded fish as well as those discarded once a vessel had exhausted its quota. Highgraded fish are those discarded in preference for larger, higher-value individuals; highgrading might occur at the trip level but also at the year level when fishers have a limiting quota for a valuable species."

In Catchpole's *et al.* (2013) study, the above criteria were applied to data from English, Danish, French and Greek observer programmes of mainly otter- and beam-trawl fisheries, spanning from the Baltic to the Mediterranean Seas. It was demonstrated that "*discards were found to be driven mostly by legislation (MLS and quotas) in the French Nephrops trawl fishery, by MLS and market inconsistencies in the Danish demersal trawl fishery, and largely by market inconsistencies in the Spanish demersal trawl fishery and by a combination of MLS, an absence of market and market inconsistencies in the Greek trawl fishery.*" From the comparisons of the different national case studies it was evident that the relative proportion and hence contribution of these inferred drivers to total discard quantities differed at a greater scale between fishing regions than between fisheries. A similar conclusion was drawn by Uhlmann *et al.* (2013) who compared discard rates and ratios across European fishing regions and fisheries.

While Catchpole *et al.* (2013) determined how much of fleet-level discards can be attributed to each of the above drivers without zooming in on individual species, from chapter 3 it can be concluded that some of the most-commonly discarded species include plaice, dab, whiting and hake. In the following the main reasons contributing to their discarding are discussed:

Plaice. About half of the catch of plaice are discarded. Highest discard ratios occur in the fisheries targeting sole with 80mm by the Netherlands, England and Belgium beam trawlers. This is both a biological and technical matter. In order to catch the 24cm of sole, the fishermen use mesh width of 80mm in the nursery area for plaice. Some 95% of the discards are below Minimum Landing Size. The BT1 with 120mm targeting plaice in the Northern North Sea has only very low discards ratios. High fuel prices and limited days at sea, keep the beamtrawls close to harbour, i.e. in the nursery area where the young fish is abundant. Prices of fish are low, but high grading does not seem to take place. It is generally assumed that the import of pangasius and cheap flatfish from North America have suppressed the market for North Sea plaice. High discards of plaice are also observed in the German TR2 fisheries on *Nephrops*.

Dab. Dab is an abundant species in the Southern North Sea, in particular in the German Bight. The vast majority of the dab catches are by catch and discarded. Main reason is the low prices. The low price is presumed not enough to land outweigh the costs of landing. Quota were initially set as precautionary TACs and are not fully utilised.

Whiting. Similarly to dab, the low price is presumed the most dominant reason for the discarding by fishermen in the Netherlands, Belgium, Sweden and Denmark. Off the eastern English coast and in the Skagerrak, local concentrations occur, and discards may be due to lack of quota. Whiting is an important bycatch in the *Nephrops* fisheries.

Hake. The Northern hake stock is recovering and currently more abundant. Quota limitations were the main driver for discarding, but it should be noted that the quota are uplifted in autumn 2013. Hake is a bycatch in cod fisheries. Swaps of quota from other countries are not that frequent, because hake is valuable.

Cod. Despite a recovery of the stock, discards have been reduced successfully with cod avoidance measures. Catch composition rules, in particular in TR2 are a driver for discards. Limited individual quota and high rent prices are also known factors.

4.3 Cod avoidance measures

At the December 2012 Council, a joint statement was made by the fisheries Ministers from Sweden, United Kingdom, Germany, Denmark and the Netherlands to draw up and implement cod avoidance plans. An overview of cod avoidance measures by Member State can be found in table 4.3-1. It should be noted that most cod avoidance measures were already in place before 2013.

 Table 4.3-1 Overview of Cod Avoidance Measures by Member State (excerpt from May 2013 EU-Norwegian working group report and updated in September 2013)

Member State	Cod Avoidance Measures
Denmark	Gear changes mainly in the Skagerrak (increase in mesh size to 120 mm; use of SELTRA trawl with 90 mm codend; and sorting grid in the Pandalus fishery and <i>Nephrops</i> fishery)
	Real-time closures under Reg. (EC) 724/2010 in the Skagerrak (15 in 2011 and 12 in 2012) and two in the North Sea in 2011.
	26 TR1 vessels using CCTV representing 50% of total cod landings.
Sweden	Main measures taken in the Skagerrak
	For the Swedish costal area fishing with trawls is prohibited inside four nautical miles from the coastline, unless for some areas where trawl fishery with grid for <i>Nephrops</i> and Pandalus is allowed.
	In the period Jan-March all fishing for cod, haddock and saithe is prohibited inside four nautical miles from the coastline.
	Area closures for all fishery in spawning areas for cod.
	Fishing with grid in all directed fisheries for Pandalus and Nephrops.
Netherlands	Cod avoidance plan in place since July 2011, comprising:
	 choice between increases in cod end mesh sizes (10 mm) or use of large mesh panels (over and above the mandatory 180 mm panel) in the demersal trawl fishery (TR1 and TR2), and:
	 Respecting monthly real-time (LPUE) closures in the Southern North Sea and Channel created jointly with the English control authorities (MMO), and:
	Seasonal closures (larger areas Dec-April), and:
	 Moving on provisions when catch composition contains more than 5% of cod, and:
	Self-sampling and observer programmes.
	Furthermore, in 2013 13 TR-vessels are using CCTV, together with a discards ban (all cod is landed).
Germany	Self-sampling programme
	Saithe fleet has moved to 120 mm codend mesh size
	Two vessels using CCTV
	Sufficient bycatch quota in the saithe and plaice fisheries

Member State	Cod Avoidance Measures
Belgium	Belgium has no cod avoidance plan in place, because there is no directed fishery for cod in Belgium. Nevertheless, Belgium took technical measures to reduce bycatch of cod during mixed fisheries operations.
	Pair-trawling is strictly forbidden for years now.
	• To reduce bycatches of roundfish, there is an obligation to configure the net of beam trawls with a top panel with meshes of at least 300 mm instead of the regulatory 180 mm top panels. For other demersal trawls, the obligation to equip nets with a square mesh panel of 110 mm for all types of trawls was expanded to all areas.
	• The effort allocation rules are converted in a maximum number of days at sea per vessel and per gear type. General rule is a total of 180 days for any type of gear in all areas, out of which a maximum of 75 days may be allocated to TR1 gear.
	 Cod quota allocation is, as a general rule and to avoid any targeting of cod by the national fleet, expressed as a maximum average quantity per day at sea. To avoid highgrading and problems with any occasional high catch rates, the allocation is expressed as an average during the fishing trip.
	• For recreational angling, specific measures are in place, with the adoption of a bag limit.
	There is a national action plan for the increase of the selectivity of gears deployed. All efforts must go to the avoidance of discards by increasing selectivity measures.
UK-Scotland	The Conservation Credits Scheme has opted to achieve the reduction through a two tiered approach, first by cod avoidance (thereby reducing discards) and then by a reduction in effort (reducing total catch). Cod avoidance is achieved by a number of measures. These include:
	 Real-time closures and seasonal and permanent closures
	• Selectivity measures in the TR2 fleet (flip-flap trawl; Faithlie trawl)
	 Selectivity measures in the TR1 fleet (Orkney/Shetland trawls; 200 mm square mesh panel; or 600 mm belly panels)
	 19 TR1 vessels fitted with CCTV representing 17% of total cod landings and 4 TR2 vessels fitted with CCTV with a stipulation to keep cod catches less than 1.5%
	 Observer programmes for vessels with < 1.5% cod catches
	Three seasonal and one temporal closure
	In 2012 TR2 vessels fishing in ICES Division IVa (with the exception of the inshore Moray Firth area) are required to fish with a specified 'highly selective gear' that has been trialled and shown to reduce cod catches by not less than 60% compared to the catches taken in a standard TR2 trawl. Scottish TR2 fishing vessels operating in other, less cod abundant, parts of the Cod Recovery Zones are required to fish while having inserted in their gears a 200 mm Square Mesh Panel, at 12-15 m from the codend.

Member State	Cod Avoidance Measures
UK-England	Cod Avoidance Recovery Scheme:
	 11 TR1 vessels and 1 GN1 vessel in the North Sea.
	 Selective gears in TR1 fleet (Shetland/Eliminator/Orkney trawl; 130mm codend; or large SMP option). Tiered days depending on option chosen
	 Highly selective gears in TR2 fleet (additional days made available for its use.
	Observer programme in TR 2 fleet
	 Real-time closures jointly created by the English and Dutch control authorities
	 Additional days made available to vessels which undertake to catch less than 5% cod.
	Other initiatives:
	 A database summarising EU gear selectivity trials and scientific literature – work ongoing.
	 Vessels in the South West beam trawl fleet took part in a pilot in 2009 (Project 50%) to reduce discards by improving the selectivity of their nets Gear specifications and results can be found <u>here</u>.
	 Furthermore, as a condition of a sole-avoidance scheme in the South West of England (Channel), nine BT vessels must fully document their catch of plaice from their inshore sole fishery including non-marketable fish. This has overlap with the Southern North Sea where there is a similar problem with a high volume and rate of discards of plaice.
UK-Northern Ireland	From 1 st February 2013 to 31 st January 2014 all Northern Irish TR2 vessels must use one of the following approved highly selective fishing gears (HSG) at all times in any sea area covered by the long-term cod plan including the North Sea. 24 vessels have fished in the North Sea at some time since 2010. The permissible HSG are:
	• Seltra "300" Trawl (4m box section with 300 mm square mesh)
	• Seltra "270" Trawl (3m box section with 270 mm diamond mesh)
	Faithlie Panel
	• Flip – flap trawl
	CEFAS net grid
	 Inclined separator panel (specification as per the Annex to Council Regulation 254/2002)
	• Swedish grid (specification as per the Appendix 2 to Annex III of EC 43/2009)
	 200 mm square mesh panel (only available for vessels 12 metres and under)
	300 mm square mesh panel (available for all vessels)
	• The selective gear research programme will continue with additional focus being placed on overall discard reduction over the next two years. It is likely that the current range of selective gear options will be rationalised on the basis of effectiveness compared to other gears and practicality of operation.

Member State	Cod Avoidance Measures
France	Very small contribution to overall cod mortality
	Creation of discard atlas
	Observer programme to ensure cod catches less than 1.5%
	 Respecting voluntarily RTCs created in Norway's waters and in UK waters by Marine Scotland
	• Several trials ('SAUPLIMOR', 'SELECCAB', 'SELECMER') to improve fishing gears' selectivity have been implemented during the last three years on-board vessels fishing in the North Sea to avoid cod catches and discards.
	• The last trial ('SELECFISH') has started at the beginning of 2013 with the aim to develop more selective trawls to reduce undesirable catches and thus discards quantities. In particular, it aims at testing several types of selective devices through testing several configurations of square mesh cylinders, and several configurations of sorting grid associated with a square mesh panel (SMP).
Norway	In Norway fisheries are regulated by quota on groups and vessels. A certain amount is set aside to cover bycatch by vessels not allowed to conduct directed fisheries on cod. RTC system is in place as well as precautionary closures administered by the Coast Guard.

4.4 Effectiveness of cod avoidance measures

4.4.1 Experience in Scotland with the use of 'avoidance measures' to reduce catch rate and discards of cod as part of the 'Conservation Credits' approach to the EU Cod Recovery plan

In considering possible approaches which might contribute to the requirement to reduce discards, it is worth reviewing the experience of existing fish 'avoidance schemes'. A central part of the 2009 EU cod recovery plan was the introduction of an effort regime in which Member States were given responsibility to distribute their allocated effort amongst vessels. Part of the basic regulation (cite) also contains Article 13.2c giving provision for alternative management approaches to be used so long as they resulted in reductions in fishing mortality equivalent to those expected under the effort regime. Given that a large component of cod mortality in the mid-2000s was attributed to discards, reductions in these would be expected to help towards reaching the target mortality.

In England, considerable use has been made of Article 13.2 c and in Scotland this has been implemented in the Conservation Credits Scheme. Two main types of measure were introduced from the outset to encourage avoidance of cod and to allow effort 'buy back'. The first, a compulsory measure, involves the use of Real Time Closures (RTCs) which are established where landings rate data linked to VMS indicates areas of cod concentrations. A method was established making use of almost real-time information on landings of cod linked to VMS data showing the areas of fishing activity. Areas of high cod abundance (landings /ping) are designated as closures. The scheme has been in place since the early years of the cod plan and the numbers of closures gradually increased to account for the progressively more stringent requirement to reduce fishing mortality, the size of the closure areas has also been increased by 4 times (to 15nm x15nm). During 2012, 173 closures were put in place each lasting for 21 days. Evaluation of the effect of closures has been attempted

and there is some evidence of industry movement away from cod abundant areas at the time of closure. Estimating what the reduction in mortality has been is more difficult – largely because a controlled experiment cannot be set up at the scale required. However, there is some evidence of reduction in catch arising from the overall closure programme.

The second, voluntary option, involves the adoption of more selective gears designed to reduce cod catch rate. A schedule of gears is available and the more selective the gear, the larger the amount of effort that can be bought back. Some gears such as the 'Eliminator trawl' or the 'Swedish Grid' appear to be very effective and attract the highest buybacks. Trialling of other gears, designed by industry and tested in catch comparison trials by MSS scientists shows that other gears such as the TR1 'Orkney trawl' (with large escape panels) and the 'highly selective' gears used in the *Nephrops* fishery (e.g. the flip –flap trawl) also reduce catches of cod but not by so much – these attract smaller buy backs. Although, the potential measurement of the effectiveness of these gears is more straightforward, their actual contribution to reducing overall mortality depends on the extent of use and also on their careful rigging during fishing operations. The uptake of the TR1 gears has been modest (around 20% of the fleet) so the contribution would not be expected to be great. Further details of the scheme and its outcomes can be found in various publications (Holmes *et al.* 2009; Holmes *et al.* 2011 and Needle and Catarino 2011)

Each year, Member States taking advantage of the Article 13.2c provision are expected to provide a report of activity to the EU with results demonstrating that the reductions in fishing mortality - F achieved using the avoidance measures meet the requirements of the cod plan. Early expectations were that the results would indicate how much each measure had contributed to the overall reduction. It became clear fairly quickly however, that this was not possible. Instead, evaluation relies on examination of some basic metrics indicative of a positive direction of travel. These include a) reductions in discard rate of cod, b) reductions in partial F of cod and c) reductions in catch rate (below what would be otherwise expected). The most recent report from Scotland (from July 2013) suggest that in the North Sea, the scheme does seem to have had positive effects and the STECF expert working group on the effort management regime notes in its 2013 report (STECF 2013a) that partial F by English vessels has dropped substantially and that some of this seems to be the result of the collective effect of the RTC and gear avoidance measures.

While it is possible that a number of other factors have also contributed to the more positive outcomes, it seems likely that 'avoidance measures' have contributed to the significant reduction in discard rate of cod. This observation may encourage some thinking around the role of avoidance as a helpful approach to reducing discards in other species and thereby meeting the landing obligations of the new CFP.

4.4.2 Netherlands

The cod avoidance measures were sent to IMARES for an *ex-ante* evaluation of their expected effectiveness in relation to the objectives (i.e. reduce CPUE and stay below 5% bycatch of cod). It was argued by IMARES that it was rather difficult to be conclusive on separate measures. A monitoring programme is in place since the measures were in place. IMARES concluded in 2013 that the objectives were met. It is still not sure though, which measure was most effective.

4.4.3 Denmark

Around half of Danish cod catches are now taken under the pilot Catch Quota Management schemes, where participating vessels are granted additional cod quota against an obligation to report all cod catches in their logbooks (Fully Documented Fisheries). The accuracy of these logbooks declarations is controlled by Electronic Monitoring using CCTV cameras and trawl sensors. Analyses of the data collected under this scheme are still ongoing, but results have consistently shown obvious changes in discarding patterns between the FDF vessels and the non-FDF fisheries in the North Sea and in the Skagerrak. Estimated discards ratios in FDF have dropped to much lower levels than in the non-FDF fisheries, and smaller cod are also landed by those vessels indicating that highgrading has reduced. CCTV monitoring has shown to be an effective and cost-efficient tool for controlling the accuracy of reported cod discards in logbooks, allowing those data to be considered as a reliable source of information on discards values alongside observers sampling programmes.

4.5 New technical measures, trials and other developments

Member State	New measures and trials
Denmark and	Focus on Skagerrak. Since February 1st, 2013 the mandatory mesh width is
Sweden	increased from 90 to 120 mm, mandatory use of sorting grids in fisheries on
	Pandalus shrimp (19 mm grid) and <i>Nephrops</i> fisheries (35 mm grid).
England	Mainly effort driven measures. Fishers can choose from different packages (e.g.
	Eliminator trawl with large meshes), earning a pay back with a certain number of
	days. There have been several trials of grids and variants in <i>Nephrops</i> fisheries (e.g.
	English net-grid).
France	Measures and trials predominantly outside North Sea. In the NS: several trials with
	mesh width and sorting grids (project 'Selecfish' being the last one).
Germany	Use of Swedish grid in <i>Nephrops</i> fisheries (effort driven). Plaice fisheries: intention
	to use TR1 120 mm, but unfavourable CPUE conversion rate and possible obligation
	to have observers on board keeps fishermen from changing from TR2 (80 mm) to
	TR1 (120mm), even though their actual catches of cod are low.
Belgium	Since June 2013 the mesh sizes in the back of the beam trawl gear should be in all
	areas at least 300 mm instead of the mandatory 180 mm. A sieve net in Crangon
	(brown) shrimp fisheries with TR3 gear is mandatory. Fishing with electric pulse is
	not allowed. There are only 2 pulse licences for trials in the shrimp fishery.
Netherlands	Cod avoidance measures are continued, trials with CCTV expanded. Since July a
	pilot in pelagic fisheries with escape panels, sorting grid, mesh width, a fish pulp
	installation, CCTV and observers on board (runs until December).

Table 4.5-1 New technical measures, trials and other developments

4.6 Other possible measures

4.6.1 Quota management

Quota management measures will in most member states be necessary to facilitate the utilisation of quotas under a discard ban. They can be an important tool to avoid unwanted bycatches or to allow these to be landed, for example via a national reserve or pooled quotas.

Swapping efforts should be enhanced, Member States should try co-operate more intensively and avoid that the 'price' for swaps will go up.

There is a general concern about the interspecies flexibility, how it will work in practice and its potential adverse effects on the stocks. But on the other hand this instrument might offer an important corrective to permit the continuation of fishing activities that would otherwise have to cease.

A brief description of how quotas are managed nationally is included in Annex 1.

4.6.2 Spatial measures

Spatial measures (real time closures, seasonal closures, permanent closures), but also 'move-on' may be helpful in cases where aggregations of juvenile or spawning fish occur. Potentially also as a tool to avoid undersized fish, and therefore will be of benefit in the implementation of the landing obligation. A system of EU-Norway real time closures is in place and UK and NL have joint national monthly LPUE closures to protect cod. Sweden and Denmark have since 2009 introduced nationally a closed area for the protection of cod in Kattegat. In parts of the area certain selective gear are allowed parts of the year. There was a discussion if, in the light of results-based management, the governments should impose closures, or leave the decision up to the industries. The question also arose if we have information of where and when aggregations of fish occur and it was recommended to address this.

4.6.3 Discarding of species with high survival

To avoid an adverse effect of the landing obligation if large numbers of juveniles that would have otherwise survived the discarding are kept onboard and die, it was argued to allow the discarding of species with high survival rates. This may help to improve stock status and to avoid the closure of fisheries if quotas for these species are exhausted. However, it is difficult to prove in a scientifically sound way whether and under which circumstances species have high survival rates. Many factors influence survival rates including the type of gear, haul duration or temperature. Scientific data on survival rates are scarce as experiments are costly. In addition, the control of the discard ban at sea becomes more difficult if discarding is allowed for some species. Nevertheless, some more robust and up-to-date estimates are needed to decide whether for example elasmobranchs or robust flatfish species are potential candidates for an exemption to avoid unnecessary negative effects of a discard ban on stocks and fisheries.

5 Discussion

In designing discard plans, and associated relevant measures to minimise discards as well as rules of control and enforcement, objectives of the landing obligation should be considered to design a satisfactory management system. Discard plans could generally follow the same strategy as the

multi-annual plans but they are only valid for three years. Because multi-annual plans are set up per fishery, it would make sense to have a fishery-based discard plan as well. However, it should be realized that the distinction into different fisheries also poses substantial challenges, because it is hard to define what constitutes a fishery.

A key factor in this context is the level of compliance and the link to the level of detail of technical regulations required to achieve an effective landing obligation. In the reform of the CFP it was called for a change to a results-based management, incentivising good fishing practices. Within a results-based management system authorities establish the overarching objectives and quality standards for the marine environment while fishers have flexibility concerning the operational means to achieve those targets, provided that they take responsibility to account for the catch under landing obligation. Such a system should better enable fishermen to optimise the economic outcome of available fishing opportunities.

6 References

Borges, L., van Keeken, O. A., van Helmond, A. T. M., Couperus, B., and Dickey-Collas, M. (2008) What do pelagic freezer-trawlers discard? ICES Journal of Marine Science, 65: 605-611.

Catchpole, T.L., Feekings, J.P., Madsen, N., et al. (2013) Using inferred drivers of discarding behaviour to evaluate discard mitigation measures. *ICES Journal of Marine Science: doi 10.1093/icesjms/fst170*.

Holmes, S. J., N. Campbell, C. Aires, P. G. Fernandes, R. Catarino, N. Bailey & K. Barratt (2009) Using VMS and Fishery Data in a Real Time Closure Scheme as a Contribution to Reducing Cod Mortality and Discards. ICES CM 2009/M:13

Holmes et al. (2011) Using fishery dependent data to inform the development and operation of a comanagement initiative to reduce cod mortality and cut discards. *ICES Journal Marine Science 68:* 1679 -1688.

ICES (2013a) Report of the Working Group on Widely Distributed Stocks (WGWIDE), Copenhagen, 27 August-2 September 2013. ICES C.M. 2013 / ACOM:15.

ICES (2013b) Report of the Working Group on Mixed FisheriesAdvice for the North Sea (WGMIXFISH), 20-24 May 2013. ICES CM 2013 / ACOM 22

ICES (2013c) Report of the working group on the assessment of demersal stocks in the North Sea and Skagerak. Copenhagen, 24-30 April 2013. ICES C.M. 2013 / ACOM: 13.

Kelleher, K. (2005). Discards in the world's marine fisheries. An update. FAO Fisheries Technical Paper. Rome, FAO. No. 470: 131p.

Needle, C. and R. Caterino, 2011. Evaluating the effect of real-time closures on cod targeting. *ICES Journal Marine Science 68* :1647 -165

Paramor et al (2009) MEFEPO North Sea Atlas. University of Liverpool ISBN 0906370604

STECF (2013a) Scientific, Technical and Economic Committee for Fisheries (STECF) – Evaluation of Fishing Effort Regimes in European Waters - Part 2 (STECF-13-13). 2013.

STECF (2013b) Landing obligation in EU fisheries, Varese, 9-13 September 2013 (EWG 13-16).

STECF (2013c) 44th Plenary Meeting Report of the Scientific, technical and economic committee for Fisheries (PLEN-13-03). EUR 26332 EN, JRC 86096. 124 pp.

STECF (2013d) Landing obligation in EU fisheries, part 2, Dublin, 26-28 November 2013 (EWG 13-17).

Uhlmann, S.S., van Helmond, A.T.M., Kemp Stefánsdóttir, E., et al. (2013) Discarded fish in European waters: general patterns and contrasts. *ICES Journal of Marine Science: doi 10.1093/icesjms/fst030*.

Van Overzee, H. M. J., Van Helmond, A. T. M., Ulleweit, J., and Panten, K. 2014. Discard sampling of the Dutch and German pelagic freezer fishery operating in European waters in 2011 and 2012. CVO Report, 14.xxx (draft)

Annex 1 Quota management around the North Sea

Denmark

Most of the important species are managed by tradable vessel shares. The demersal species of cod, sole, plaice, Norway lobster, saithe, haddock, pandalus, hake, turbot, monkfish and salmon are managed by Vessel Quota Shares (VQS). The pelagic species herring and mackerel, and the industrial species of sandeel, sprat, boarfish, horse mackerel, blue whiting, and Norway pout are managed by Individually Transferable Quotas (ITQ). The difference between VQS and ITQ's are mainly, that it is easier to split up and sell ITQ's than VQS's. A small part of the quota is reserved for less active vessels, which have no tradable vessel shares. For most of the quotas managed by tradable vessel shares, a reserve is managed nationally in a "Fish Fund". Quotas in the Fish fund can be used for a number of purposes, such as swapping of quota with other member states, allocation for young fishermen wanting to establish themselves, extra allocations for coastal fisheries, or reserves for unavoidable bycatches or reserves to avoid overfishing. There also exists a system of fishing pools managed by the fishermen, where vessels pool their quotas, so that they can lease quotas from each other, thereby minimizing discards. A few species are managed by a non-tradable license system. This includes oysters, mussels and brown shrimps.

United Kingdom

UK Administrations (England, Scotland, Wales and Northern Ireland) each have a share of the UKs quota. UK government ultimately has a responsibility for ensuring quota limits are not exceeded.

The UK quota management system works by reference to Fixed Quota Allocations (FQA) units. FQA units represent a share of quota allocated to UK vessels (based on a track record of fishing activity in a historic period) that are attached to vessel licences. These shares do not reflect a fixed permanent entitlement to quota (such as with an ITQ) beyond each year in question. Administrations determine how these shares are distributed to vessels they license.

Broadly, the UK fishing fleet is divided into three main groups for purposes of quota allocation:

- The 'sector', made up of vessels (mainly over 10m in length) that are members of one of the 24 POs in the UK.
- 2. The 'non sector', made up of vessels over 10m in length not on membership of a PO.
- 3. The 'under 10s', vessels of 10m and under in length not in membership of a PO

Annual quota allocations are based on total number of units held by the vessels in membership of each group outlined above. Working with UK authorities to a set of agreed UK and national Quota Management rules, it is for each PO to decide how best to allocate quota to its members. Most UK POs operate under individual quota (IQ) systems, whereby members expect to fish against the level of quota obtained by the PO through the FQA units associated with the vessel's licence. Quotas can be leased in or out to other fishermen and swaps are facilitated between POs and the other two groups (non-sector and under 10s) in addition to international swaps between Member States. However, some POs operate a pool type arrangement allowing all members equal access to quota through the use of maximum catch rates.

The 'non-sector' and 'under 10s' operate under a pool of FQAs which are managed directly by UK authorities. Activity is controlled by sets of catch limits are set for the quantities of different stocks a vessel may catch in a given period (limits are usually set on a monthly basis but can be for different periods for specific fisheries. These thus limit the catches of vessels operating at the upper ends of fishing activity, with the majority of vessels involved in each fishery not being impacted by the limits. More information can be obtained from:

http://www.marinemanagement.org.uk/fisheries/management/quotas.htm.

France

The French State administration has the responsibility to allocate the quotas and to ensure quotas limits are not exceeded. The French fishing fleet is divided between :

- the vessels that are members of a PO
- the vessels that are not members of a PO

The French quota management system works by reference to Fixed Quota Allocations (FQA) units. FQA units represent a share of quota allocated to vessels, based on a track record of fishing activity in a historic period. These shares do not reflect a fixed permanent entitlement to quota (such as with an ITQ). Annual quota allocations between the PO and the vessels not on membership of the PO are based on the FQA. It is then to each PO to decide how best to allocate quota to its members. Swaps are facilitated between POs in addition to international swaps between Member States.

Germany

Fishing concessions allocated individually to vessels of fishermen or producer organisations for main stocks: Area 4: COD, POK, PLE, ANF, pelagic stocks (mainly high-seas fleet), NEP for directed fishery (partly). Area 3A: COD, HAD, PLE, SOL, NEP for directed fisheries. Catches/by-catches of other stocks are deducted from national quotas/reserves. Allocation of fishing concessions follows an "internal relative stability". Quota entitlements are transferable, but a permanent transfer is only possible in connection with the respective vessels.

Belgium

A collective quota allocation system. The regional authorities describe with a ministerial decree the quota allocations. The Quota Commission (from the PO) gives advice to the authorities in this respect. For the most important stocks (i.e. sole and plaice) an allocation is made for the great fleet segment GFS (engine power above 221 Kw) and for the small fleet segment SFS (engine power under 221 Kw) in function of the engine power of the vessel, as X kg per Kw installed engine power. The allocation is done for a certain period of time (6 months, 4 months, 2 months for the GFS and 10 months, 2 months for the SFS). After each period the quota left are redistributed. For the species in bycatch, day limits are defined as X kg per equivalent day presence in an area. Again the allocation is different for GFS and SFS. For the smaller vessels part of the coastal fleet segment, another quota allocation scheme is in force. With the exception of the species under management or recovery plan, they do not have quota limitations to respect. For the species under management plans the day limits in force for the SFS, are doubled.

Netherlands

In general two systems in place. First is the individual transferable quota for 8 species: cod, whiting, plaice, sole, mackerel, horse mackerel, herring and greater silver smelt, in western waters and North Sea (ITQ for mackerel and silver smelt stock outside North Sea). It is not possible for a vessel to have only an ITQ for plaice without sole. The same applies to the ITQ's for cod and whiting (unavoidable by-catches). The sale of ITQ's can only take place with the approval of the ministry. Not all of the entire quotas are converted into ITQ's. From each quota's so-called "national reserve" is held back as a buffer for possible small quota overruns and for swaps to compensate the overruns. In addition to the ITQ system there are two kinds of by-catch regulations in place for vessels without ITQ's for certain species. Members of an Producer Organisation are obliged to transfer their ITQ's and their monthly by-catch quantities to the PO and to commit themselves to the joint fishing plan and other rules. In principle the members maintain the right to use their own ITQ's and by-catch quantities, but are also allowed to lease quota to or from other members. The lease of ITQ's (whole of partial) between the members of the same PO are only recorded by the PO and not by the ministry. This is in contrast to the exchange of quantities between the PO's. A PO can only transfer an amount of fish of a particular species to another PO, if the quota of the receiving PO of that species has not been exceeded. When the quota of a PO of particular species is fully fished, fishing for that species is prohibited for the members of that PO. The second system is for non-ITQ stocks. In principle these quota are available for every vessel with a fishing licence, but there are special rules for hake and haddock.

Sweden

ITQ-system is in place for the main pelagic species: herring, sprat, mackerel, blue whiting and sandeel. National authority (SwAM) handle allocation and transfers. Catches of other stocks are deducted from national quota. Weekly rations for Norway lobster, cod, haddock, saithe, plaice, mackerel. Monthly rations for *Pandalus*. Levels of rations depends on area and gear category. Move-on provision if overshoot of weekly/monthly quantity. Overshoots should be landed (in order not to contradict the high-grading ban), however a fee corresponding to 80% of landed value may be administered.

Annex 2 Differences between ICES and STECF discard raising for the North Sea

The ICES WGNSSK/MIXFISH data call approach (which is about to be extended to other ICES areas and working groups) was initiated after that the MIXFISH group unsuccessfully tried to use the STECF data for their own purposes back in 2008-2009. The sum of catch and age distribution in the STECF data did not match sufficiently well the ICES stock level estimates, which prevented relevant analyses of partial F to be performed.

In 2013, ICES WGMIXFISH started a more precise comparison of the metrics coming from STECF and from ICES WGNSSK/WGMIXFISH for the North Sea stocks (ICES 2013b). The totals landed and effort employed by directly comparable categories should be the same between datasets, and indeed WGMIXFISH concluded that the issues were not important, although they might still occur due to differences in segmentation. But as expected, the largest differences between the data sets were found in the discard estimates (after raising).

Discard data is only sampled for a fraction of national fleets. The way the discard data is raised within a nation can be affected by the grouping of vessels implied by a fleet specific data call. Additionally, once the 'raw' data is supplied a working group has choices whether to assign (raise) a discard rate (and associated discards) to unsampled fleets and if so how. Assignment process for WGMIXFISH and STECF is different, as described below.

Differences could then result from different rules for assigning discards to metiers where discard data is missing in the working groups but it could also be an effect of countries submitting different discard estimates to various working groups.

Differences in the data call

STECF effort data call request data at a scale with is lower than what is usually sampled by national institutes. The information is requested at a finer breakdown of mesh size, vessel length, specific condition than the DCF métiers.

On this consideration, the WGNSSK/MIXFISH data call proceeded from a bottom-up ad-hoc approach where the individual institutes indicated their actual sampling strata, which often spawn over several closely related DCF level 6 metiers (e.g. OTB_DEF_70-99_0_0 and OTB_CRU_70-99_0_0, or OTB_DEF_100-119_0_0 and OTB_DEF_>=120_0_0). These actual strata ("supra métiers") have formed the basis of the data call, allowing for both metiers which area largely common to all countries, and also to country-specific strata (for ex OTB_CRU_70-99_2_35).

For the North Sea (area 4), there is comparatively 3 to 5 times more strata for a country to fill in the STECF data call than in the ICES WGNSSK/WGMIXFISH data call.

Raising procedures

The principles for raising information (both discards ratio and age distribution) from sampled to unsampled strata differ between the two procedures.

In the STECF database, the raising is entirely automatic, applying fixed procedures that have been unchanged for many years now. The raising is done at the lowest stratum level, i.e. area*quarter*gear*mesh size, where a country's landings without discards (and/or age information) is raised by available discards ratio from other countries within the same stratum. If there are no sampled strata available, then no raising is performed. This method is therefore fully objective and quick, but bears some risk for artefact raising, where irrelevant or inconsistent discards ratio are used equally (for example if a country has closed a fishery in 4th quarter by quota exhaustion, higher discards ratio may apply to other countries which haven't been in the same situation).

In the ICES InterCatch database as used by the WGNSSK/WGMIXFISH for the North Sea, the raising is entirely manual and requires expert judgement. In 2013, a number of tools have been developed and applied to the 2012 data in order to screen and visualize the data available and help taking informed decision. Discards ratio by metier and country are plotted. The ICES WGs applies consensus guidelines, with the basic principle that no unsampled metier should be left without a discards estimate. This implies that if there are no sampled strata directly related to raise from, then a decision can be made to choose any other strata, or the average across all strata. and procedures have been developed in InterCatch in order to group sampled and unsampled strata respectively, allowing quicker and more efficient data work This procedure avoids pitfalls of using irrelevant strata for raising métiers, and can better involve expert knowledge; but compared to STECF, this procedure is more demanding in time and expertise, is more subjective and more likely to evolve from year together with increased knowledge of the stock coordinator.

It is not considered that any method can be considered more or less appropriate than the other one, as both procedures bears advantages and disadvantages as explained above.

Discards information by fleet for the main North Sea demersal stocks

The overall consistency at the stock level as shown in the analyses above can nevertheless hide major disparities when breaking down at the fleet-country level. A brief illustration of this is given below with the example of 2012 whiting catch data in area 4:

ICES INTERCATCH

Gear	 2012 landings 	2012 Discards	2012 DR
BEAM	6	29	0.83
BT1	1	0	0.33
BT2	33	1372	0.98
GN1	7	7	0.49
GT1	3	2	0.40
LL1	2	1	0.33
oth	279	140	0.33
OTTER	294	146	0.33
TR1	7925	837	0.10
TR2	3815	3223	0.46
Grand Total	12366	5757	0.32

STECF

Gear	2012 landings	2012 Discards	2012 DR
BEAM	8	20	0.71
BT1	1		0.00
BT2	280	1657	0.86
DEM_SEINE	39		0.00
DREDGE	0		0.00
GN1	2	207	0.99
GT1	1	9	0.86
LL1	0		0.00
none	0		0.00
OTTER	58	1425	0.96
PEL_SEINE	1	0	0.07
PEL_TRAWL	339		0.00
POTS	0		0.00
TR1	7805	713	0.08
TR2	3474	4448	0.56
TR3	74		0.00
Grand Total	12083	8477	0.41

The total landings for the entire area is consistent, and the absolute difference in the estimated overall discards rate lie within 10%. Yet, the breakdown between gears differ, both with regards to landings and to discards (nb in this example the InterCatch DCF métiers have been allocated to the equivalent STECF categories in the best way for comparison purpose). But ultimately, the overall picture is globally coherent in terms of the scale of discards ratio for the main gears (TR1-TR2, which are likely to be sampled, while discards and discards rate estimates are obviously more uncertain for the less important (and thus less sampled) gears for this stock

The best way to reduce uncertainty linked to the raising method is to reduce the amount of landings that are not sampled for discards information.

The ICES WGNSSK 2013 (ICES 2013c) has produced a range of plots illustrating the importance of sampled vs. unsampled strata:

Figure 1 : sampled vs. unsampled landings strata for 2012 haddock in North Sea and Skagerrak (source: ICES WGNSSK 2013). The first group of bars shows landings (in % of total landings) for strata by metier (legend) and country (colour) that have some discards information attached. The second group of bars illustrates the unsampled strata. The black line is the cumulative proportion, with grey lines showing the 90, 95 and 100% of total landings. For this stock, almost 95% of landings have discard information attached.

The analysis as above has shown that for most of the main assessed stocks in the North Sea, landings are well covered by discards samplings, with fairly high landings proportions : above 80% for cod and whiting, and up to 95% for saithe, haddock or plaice in Skagerrak, but 70% for plaice in the English Channel.

Similarly, the STECF database now includes a quality control code (A, B or C) indicating the % of landings covered with discards information.

Conclusions and implications for the discards atlas

Such diagnostics are considered a very useful summary of the information available, and should hopefully be expanded to other stocks from other areas and ICES working groups and the use of intercatch generalized (or replaced by the regional Data Bases when these get fully operational). A high % coverage involving the DCF métiers gives confidence that discrepancies between ICES and STECF discards estimates may not be large, as only marginal strata will have to be raised by one or another method. They also provide information to Member states wanting to develop discards atlas on which information is directly reliable as coming from the Member states own discards sampling program. The remaining part of métiers and fisheries not nationally covered cannot be expected to have a fully reliable and robust discards estimate, which ever source is used.

Annex 3 Detailed landing and discard tables by species, country and gear

The main part of the information on landings and discards is presented in section 3. In that section, the requirement was that the data-tables would fit on one page. That meant that combinations of factors could not be shown. In this annex, the requirement to data-tables on one page is left. This makes it possible to show the combination of area, species, country and gear. The information is derived from the same data source as section 3 and also has the same caveats with regards to quality and coverage. Note that the information is only presented for those combinations where the estimated average catch 2010-2012 is larger than 50 tonnes.

Table A.3.1 North Sea || demersal fisheries: landings and discards per species and year and area (tonnes). Table sorted in descending order on average catch 2010-2012. Only country and gear combination where average 2010-2012 catch larger than 50 t.

SPEC_NAME	SPECI	COUNTRY	REG_GEAR	2010	2010	2010	2011	2011	2011	2012	2012	2012	Avg	Avg	Avg	Avg
	ES			Landing	Discard	%DR	Landing	Discard	%DR	Landing	Discard	%DR	2010-	2010-	2010-	2010-
													2012	2012	2012	2012
													Landing	Discard	Catch	%DR
Plaice	PLE	NLD	BT2	23104	21007	48%	24174	19235	44%	23398	28421	55%	23559	22888	46446	49%
Plaice	PLE	NLD	TR2	1556	333	18%	1520	22789	94%	1449	999	41%	1508	8040	9549	84%
Plaice	PLE	NLD	TR1	1672	2	0%	2361	36	2%	3523	2283	39%	2519	774	3292	23%
Plaice	PLE	NLD	BT1	580		0%	627		0%	3118		0%	1442	0	1442	0%
Plaice	PLE	NLD	BEAM	71	0	0%	35	0	0%	28	999	97%	45	333	378	88%
Plaice	PLE	NLD	OTTER	213		0%	6	0	0%	90	0	0%	103	0	103	0%
Plaice	PLE	ENG	BT2	7352	1943	21%	7493	95	1%	7565	124	2%	7470	721	8191	9%
Plaice	PLE	ENG	TR1	2376	211	8%	2924	296	9%	4042	765	16%	3114	424	3538	12%
Plaice	PLE	ENG	TR2	1097	318	22%	1234	1044	46%	1105	533	33%	1145	631	1777	36%
Plaice	PLE	ENG	BT1	539		0%	561		0%	1321		0%	807	0	807	0%
Plaice	PLE	DNK	TR1	6051	8	0%	7949	73	1%	8340	294	3%	7446	125	7571	2%
Plaice	PLE	DNK	GT1	618	1495	71%	1008	2	0%	1883	7	0%	1170	501	1671	30%
Plaice	PLE	DNK	GN1	1564	0	0%	1419	2	0%	905	3	0%	1296	2	1298	0%
Plaice	PLE	DNK	BT1	922		0%	1122		0%	944		0%	996	0	996	0%
Plaice	PLE	DNK	TR2	356	62	15%	311	426	58%	218	114	34%	295	200	496	40%
Plaice	PLE	DNK	BEAM	0	22	100%	0	135	100%	0	171	100%	0	109	109	100%
Plaice	PLE	DEU	TR2	1394	297	18%	1529	18005	92%	1368	684	33%	1430	6328	7759	82%
Plaice	PLE	DEU	BT2	1507	2139	59%	1479	853	37%	1450	1209	45%	1479	1400	2879	49%
Plaice	PLE	DEU	TR1	789	2	0%	784	74	9%	1003	158	14%	859	78	937	8%
Plaice	PLE	BEL	BT2	2215	1025	32%	2267	931	29%	1601	1184	43%	2028	1047	3074	34%
Plaice	PLE	BEL	BEAM	9	0	0%	15	0	0%	19	8118	100%	14	2706	2720	99%
Plaice	PLE	BEL	BT1	948		0%	1635		0%	2492		0%	1691	0	1691	0%
Plaice	PLE	BEL	TR2	216	43	16%	321	2874	90%	584	306	34%	373	1074	1448	74%
Plaice	PLE	BEL	TR1	172	0	0%	259	4	2%	322	62	16%	251	22	273	8%
Plaice	PLE	SCO	TR1	2690	269	9%	2967	260	8%	2563	520	17%	2740	350	3089	11%
Plaice	PLF	SCO	BT2	429	520	55%			0%	80	78	49%	170	199	369	54%
Plaice	PLF	SCO	TR2	218	52	19%	255	131	34%	188	85	31%	221	89	310	29%
Plaice	PLF	FRA	TR2	105	26	20%	108	666	86%	46	27	37%	87	240	326	73%
Plaice	PLF	FRA	GT1	58	314	84%	144	3	2%	106	-/	1%	103	106	209	51%
Plaice	PLF	FRA	BT2	20	25	55%	55	35	39%	43	54	56%	39	38	-05	49%
Plaice Total	1	1	1	58840	30110	34%	64564	67968	51%	69796	47198	40%	64400	48425	112825	43%
Dab	DAB	NLD	BT2	3461	30071	90%	3456	46142	93%	2664	17987	87%	3194	31400	34594	91%
Dab	DAB	NLD	TR2	568	8857	94%	436	34141	99%	430	5511	93%	478	16170	16648	97%
Dab	DAB	NLD	TR1	717	463	39%	605	253	30%	632	4229	87%	651	1649	2300	72%
Dab	DAB	NLD	BEAM	155	0	0%	78	0	0%	89	1084	92%	107	361	469	77%
Dab	DAB	NLD	GT1	10	199	95%	5	4	47%	20	9	32%	12	71	83	86%
Dab	DAB	NLD	BT1	32		0%	25	54	68%	111	-	0%	56	18	74	24%
Dab	DAB	DEU	BT2	126	4858	97%		2231	96%	113	5291	98%	112	4127	4239	97%
Dab	DAB	DEU	TR2	108	1225	92%	121	7956	99%	66	1163	95%		3448	3546	97%
Dab	DAB	DEU	TR1	110	91	45%	82	78	49%	53	88	63%	82	86	167	51%
Dab	DAB	FRA	TR2	106	1598	94%	138	10488	99%	49	1055	96%	98	4380	4478	98%
Dab	DAB	FRA	GT1	13	645	98%	35	17	32%	36	10	22%	28	224	252	89%
Dab	DAB	BEL	TR2	37	577	94%	36	2891	99%	75	2038	96%	49	1835	1885	97%
Dab	DAB	BEL	BEAM	67	0	0%	26	0	0%	88	1201	93%	60	400	460	87%
Dab	DAB	BEL	BT2	160	229	59%	92	158	63%	75	242	76%	109	210	319	66%
Dab	DAB	BEL	TR1	20	13	39%	32	18	36%	131	646	83%	61	226	287	79%
Dab	DAB	BEL	BT1	33	10	0%	48	105	68%	80	0.0	0%	54	35	89	40%
Dab	DAB	DNK	GT1	22	1951	99%	32	5	13%	64	13	16%	39	656	696	94%
Dab	DAB	DNK	TR1	365	234	39%	476	162	25%	258	246	49%	367	214	581	37%
Dab	DAB	DNK	TR2	19	243	93%	8	610	99%	4	688	99%	11	513	524	98%
Dab	DAB	DNK	BEAM	0	85	100%	0	228	100%	0	114	100%	0	143	143	100%
Dab	DAB	DNK	GN1	97		0%	74	18	20%	53	15	22%	75	11	86	13%
Dab	DAR	ENG	TR1	76	22	27%	135	232	63%	161	974	85%	174	393	517	76%
Dab	DAR	ENG	BT2	357	178	33%	272	11	4%	313	31	9%	314	73	387	19%
Dab	DAR	ENG	TR2	56	179	76%	66	185	74%	313	56	63%	51	140	191	73%
Dab	DAR	SCO	TR1	177	35	16%	144	193	57%	114	1204	91%	145	477	622	77%
Dab	DAR	sco	BT2	25	189	88%	144	100	0%	1	21	94%	Q	70	79	89%
Dab Total	12.10	1	12	6919	51943	88%	6521	106179	94%	5712	43867	88%	6384	67330	73714	91%
200 1000				0919	21242	0070	0521	1001/9	J+70	5/12	-5007	0070	0504	0, 550	, 57 14	1 21/0

Table A.3.1 North Sea || demersal fisheries - continued

							1			1						
SPEC_NAME	SPECI	COUNTRY	REG_GEAF	2010	2010	2010	2011	2011	2011	2012	2012	2012	Avg	Avg	Avg	Avg
	ES			Landing	Discard	%DR	Landing	Discard	%DR	Landing	Discard	%DR	2010-	2010-	2010-	2010-
													2012	2012	2012	2012
													Landing	Discard	Catch	%DR
Calities	DOK	DELL	TD4	11070	200	20/	0222	200	20/	7050	2	00/	0417	222	0050	20/
Saithe	РОК	DEU	TR1	11070	399	3%	9323	298	3%	/858	3	0%	9417	233	9650	2%
Saithe	РОК	SCO	TR1	7635	1366	15%	6312	1736	22%	5307	4088	44%	6418	2397	8815	27%
Saithe	РОК	SCO	TR2	201	106	35%	217	815	79%	141	33	19%	186	318	504	63%
Saithe	POK	FRA	TR1	5344	4	0%	7736	5	0%	12442	0	0%	8507	3	8510	0%
Saithe	РОК	DNK	TR1	4785	34	1%	5130	3	0%	4192	54	1%	4703	30	4733	1%
Saithe	РОК	ENG	TR1	4096	239	6%	3735	488	12%	2250	1344	37%	3360	690	4050	17%
Saithe	РОК	SWE	TR1	794	3	0%	780	1	0%	868	10	1%	814	5	819	1%
Saithe Total	1. 0.1.		=	33925	2150	6%	33233	3345	9%	33057	5532	14%	33405	3676	37081	10%
Haddock	НАР	sco	TR1	20256	22/5	1/1%	10191	3/1/	15%	23611	1210	5%	21016	2656	23672	11%
Haddock		500		20230	1011	670/	1076	1670	710/	1665	1001	570 E 40/	1050	2000	5702	66%
Пациоск	HAD	300		2555	4041	07%	10/0	4070	/1%	1005	1901	54%	1959	2022	5/92	00%
Набоск	HAD	SCO	OTTER	14		0%	39		0%	129	34	21%	61		/2	16%
Haddock	HAD	ENG	TR1	1541	128	8%	1481	216	13%	1096	18	2%	1373	121	1494	8%
Haddock	HAD	ENG	TR2	211	35	14%	218	221	50%	228	20	8%	219	92	311	30%
Haddock	HAD	DNK	TR1	660	87	12%	667	70	9%	988	221	18%	772	126	898	14%
Haddock	HAD	FRA	TR2	132	2	2%	1538	3	0%	64	7	10%	578	4	582	1%
Haddock	HAD	FRA	TR1	72	0	0%	54	19	26%	120	0	0%	82	6	88	7%
Haddock	HAD	DEU	TR1	646	34	5%	565	139	20%	488	53	10%	566	75	641	12%
Haddock	HAD	NIR	TR1	385	57	13%	328	83	20%	307	3	1%	340	48	388	12%
Haddock	нар	NIR	TR2	91	135	60%	59	139	70%	32	1	4%	61	92	152	60%
Haddock			TD1	26	200	0070	64	135	70/0	172	2/	1 7%	01	1/	105	12%
				30	5	0 /0	100	17	1 4 0 /	1/3	34	1//0	91	14	105	1370
	HAD	SVVE	IRI	74	0	8%	106	1/	14%	18	15	10%	8/	13	100	13%
Haddock Total		1	I	26454	8674	25%	261//	9001	26%	28982	3598	11%	27204	/091	34296	21%
Cod	COD	SCO	TR1	11114	2952	21%	9855	1338	12%	10234	2216	18%	10401	2169	12570	17%
Cod	COD	SCO	TR2	418	979	70%	237	912	79%	174	996	85%	276	962	1239	78%
Cod	COD	DNK	TR1	3478	333	9%	3110	82	3%	3379	304	8%	3322	240	3562	7%
Cod	COD	DNK	GN1	1931	10	0%	1705	98	5%	1381	51	4%	1672	53	1725	3%
Cod	COD	DNK	GT1	101	0	0%	68	7	9%	123	6	5%	97	4	102	4%
Cod	COD	DNK	LL1	124		0%	57	0	1%	0	0	3%	60	0	61	0%
Cod	COD	DEU	TR1	2357	146	6%	1871	156	8%	1925	123	6%	2051	142	2192	6%
Cod	COD	DEU	GN1	341	2	1%	257	9	3%	145	6	4%	248	6	253	2%
Cod	COD	DELL	TR2	93	40	30%	51	42	45%	30	8	17%	61	30	90	33%
Cod	COD	DEU	BT2	78	10	11%	35	24	5%	27	10	28%	47	7	54	1/1%
Cod	COD			1271	102	120/	1041	00	00/	010	110	1 20/0	1075	120	1204	1470
	COD			15/1	102	12%	1041	00	0%	015	110	15%	1075	129	1204	11%
Cod	COD	NLD	IRI	807	79	9%	622	21	3%	813	62	1%	/4/	54	801	/%
Cod	COD	NLD	TR2	198	52	21%	1/4	91	34%	138	46	25%	1/0	63	233	27%
Cod	COD	ENG	TR1	1360	56	4%	1299	61	5%	874	12	1%	1178	43	1221	4%
Cod	COD	ENG	GN1	255	2	1%	204	4	2%	207	1	0%	222	2	224	1%
Cod	COD	ENG	TR2	149	57	28%	110	159	59%	97	39	29%	118	85	204	42%
Cod	COD	ENG	BT2	80	3	3%	50	0	0%	35	1	2%	55	1	56	2%
Cod	COD	BEL	BT1	236		0%	356		0%	621		0%	405	0	405	0%
Cod	COD	BEL	BT2	251	69	21%	178	10	5%	136	9	6%	188	29	218	13%
Cod	COD	BEL	TR2	57	15	21%	63	40	38%	54	8	12%	58	21	79	26%
Cod	COD	FRA	TR2	287	84	23%	422	178	30%	174	18	13%	278	 Q2	371	25%
Cod	COD	FRA	TR1	20	1	10/	179	15	110/	20	10		2,3 Q7	55	Q0	6%
Cod	COD	EDA	GT1	30	с Т	+ /0 /0/	120	- T2	11/0	65	0	C 0/0	02 E0	Э	00 E 2	E 0/0
	COD		011	42	0	0%	49	5	9%	39	4	0%	50		251	5%
Cod	COD	SVVE	IRI	225	17	1%	211	/	3%	309	23	1%	248	16	264	6%
Lod	COD	SWE	LL1	125		0%	93	1	1%	137	0	0%	119	0	119	0%
Cod Total	1	I		25510	5089	17%	22244	3323	13%	21932	4061	16%	23229	4158	27386	15%
Whiting	WHG	SCO	TR1	5266	2323	31%	5875	831	12%	7225	543	7%	6122	1232	7354	17%
Whiting	WHG	SCO	TR2	1251	2742	69%	1621	2723	63%	1401	1353	49%	1424	2273	3697	61%
Whiting	WHG	FRA	TR2	2195	3158	59%	9223	5482	37%	1475	2460	63%	4298	3700	7998	46%
Whiting	WHG	NLD	BT2	297	2442	89%	336	668	67%	248	1463	86%	294	1524	1818	84%
Whiting	WHG	NLD	TR2	191	342	64%	124	107	46%	142	305	68%	152	251	404	62%
Whiting	WHG	NLD	TR1	72	113	61%	57	15	21%	56	53	49%	62	60	122	49%
Whiting	WHG		GN1		115	0%	1	10		1	100	100%	1	60	67	90%
Whiting				410	220	2010	1	200	170/	1	193	100/0	1	271	07	430/
willing	WHG			419	239	30%	322	290	4/%	38/	283	42%	3/6	2/1	040	42%
wniting	WHG	ENG	IKI	426	180	30%	620	121	16%	370	85	19%	4/2	128	601	21%
wniting	WHG	DNK	OTTER	0		0%	0	0	7%	19	1424	99%	6	475	481	99%

Table A.3.1 North Sea || demersal fisheries - continued

SPEC_KAMM SPEC COUNTRY REG_GEAB 2010 2011 2011 2011 2011 2012 2012 2012 2012 2010		i ocu j	- ucilici se	Institutes	contin	ucu										,	
IS Image Image Bickard %08 Landing Dickard %08 <	SPEC_NAME	SPECI	COUNTRY	REG_GEAR	2010	2010	2010	2011	2011	2011	2012	2012	2012	Avg	Avg	Avg	Avg
Whiting WH PHK FR1 120 130 52% 107 2 2% 94 23 20% 1017 52 2% 94 23 20% 20% 1017 52 2% 94 23 20% 335 30% 335 30% 311 30 7% 311 30 7% 311 30 7% 311 30 7% 31 30% 7% 31 30 7% 31 30 20% 50 <		ES			Landing	Discard	%DR	Landing	Discard	%DR	Landing	Discard	%DR	2010-	2010-	2010-	2010-
Ninting Nint Pice Field Pice														2012	2012	2012	2012
Writing WHS NHK TR1 120 120 120 120 121 120 121														Landing	Discard	Catch	%DR
White WH PEL_TWA P3 Lo P3 Lo P3 Lo P3 P3 Lo P3 P3 <	W/hiting	WHG	DNK	TR1	120	120	52%	107	2	2%	Q/I	22	20%	107	52	150	22%
white pitte pitte <th< td=""><td>Whiting</td><td>WHG</td><td></td><td></td><td>20</td><td>150</td><td>0%</td><td>10</td><td>2</td><td>0%</td><td>211</td><td>25</td><td>20%</td><td>107</td><td>0</td><td>100</td><td>0%</td></th<>	Whiting	WHG			20	150	0%	10	2	0%	211	25	20%	107	0	100	0%
Writing Writing <t< td=""><td>Whiting</td><td>WIIG</td><td></td><td></td><td>33</td><td>F 7</td><td>100%</td><td>19</td><td>100</td><td>100%</td><td>511</td><td>20</td><td>1000/</td><td>121</td><td>50</td><td>121</td><td>100%</td></t<>	Whiting	WIIG			33	F 7	100%	19	100	100%	511	20	1000/	121	50	121	100%
Writing Writing <t< td=""><td>whiting</td><td>WHG</td><td>DINK</td><td>BEAIVI</td><td>0</td><td>57</td><td>100%</td><td>0</td><td>100</td><td>100%</td><td>0</td><td>20</td><td>100%</td><td>0</td><td>59</td><td>59</td><td>100%</td></t<>	whiting	WHG	DINK	BEAIVI	0	57	100%	0	100	100%	0	20	100%	0	59	59	100%
Witting WHC DEU B12 15 13.8 92% 20 34.2 21 2.2 13 10.0 113 10.2 65 50 Whiting WHC RE B72 83.3 77.7 45% 66 114 718 23 166 88 50 1120 700 704 Whiting WHC NIR 11054 11228 54% 1073 37% 1181 8433 24 188 50 11242 10 50 11242 10 50 11242 10 50 11242 10 50 11242 10 68 100 153 160 1123 100 50 277 133 50 277 133 50 277 133 50 277 133 50 277 133 50 277 133 50 277 133 50 277 133 50 277 373 50 <td>whiting</td> <td>WHG</td> <td>DEU</td> <td>TRZ</td> <td>97</td> <td>198</td> <td>6/%</td> <td>46</td> <td>13</td> <td>23%</td> <td>6</td> <td>6</td> <td>50%</td> <td>50</td> <td>/3</td> <td>122</td> <td>59%</td>	whiting	WHG	DEU	TRZ	97	198	6/%	46	13	23%	6	6	50%	50	/3	122	59%
Whiting WHC DEU TH1 35 4.8 558 4.1 4.0 489 17 7 7.9 31 3.2 6.1 300 Whiting WHC NR TR2 4.6 53 538 62 97 618 433 428 588 50 59 100 648 Norway lobiter NEP SCO TR1 442 18 455 70 711 408 774 157 613 643 424 182 414 172 711 407 2400 433 840 414 1233 355 105 075 614 075 68 734 50 727 138 100 1202 0 1202 0 1202 1202 1202 1202 1202 1202 1202 1202 1202 1202 1202 1202 1202 1202 1202 1202 1202 1202 1202 121	Whiting	WHG	DEU	B12	15	158	91%	20	132	87%	2	1/	92%	13	102	115	89%
Whiting WHe Rit. BT2 83 77 48% 64 147 718 23 166 88% 51 113 120 708 Whiting trual NEP SCO TR2 1523 0 0.44 1075 374 1131 8433 24 13628 1072 50 0 NC Norwip lobiter NEP SCO TR1 442 18 444 537 0 0.46 0.48 1072 376 6 328 50 277 1253 Norway lobiter NEP FNC TR2 136 0 0.44 128 0 0.45 128 0.48 1.41 128 337 1.46 118 126 0 0.44 128 0 0.41 128 128 120 128 148 141 128 148 148 148 148 148 148 148 148 148 148 148 148 <t< td=""><td>Whiting</td><td>WHG</td><td>DEU</td><td>TR1</td><td>35</td><td>48</td><td>58%</td><td>41</td><td>40</td><td>49%</td><td>1/</td><td>/</td><td>29%</td><td>31</td><td>32</td><td>62</td><td>50%</td></t<>	Whiting	WHG	DEU	TR1	35	48	58%	41	40	49%	1/	/	29%	31	32	62	50%
Whitem Virtle TR2 46 53 53 62 97 613 443 365 375 1181 843 428 1362 1007 441 375 375 1181 843 428 1362 1007 445 1225 436 1225 436 1235 436 1235 436 1235 436 1235 436 131	Whiting	WHG	BEL	BT2	83	77	48%	46	114	71%	23	166	88%	51	119	170	70%
Whiteg Trail 105/45 1228 54% 1328 1378 178	Whiting	WHG	NIR	TR2	46	53	53%	62	97	61%	43	26	38%	50	59	109	54%
Norway lobster NFE SCO TR1 482 18 939 367 288 968 800 964 0 1245 0 11245 0 11245 0 11245 0 11245 0 11245 0 112 0 112 0 112 0 112 0 112 0 112 0 112 0 112 0 112 0 112 0 112 0 112 0 112 0 112 0 112 0 112 0 112 0 112 0 112	Whiting Total				10546	12258	54%	18519	10735	37%	11819	8433	42%	13628	10475	24104	43%
Norway lobter NFP NLD ITR2 6.21 74 18 4% 587 0 0% 668 0% 578 66 588 518 123 33% Norway lobter NFP NLD 172 518 0.0 412 538 0.0 420 780 0.0 4558 940 414 132 Norway lobter NFP FNG TR1 108 3 34 128 0 0% 2.7 0% 88 1 89 13 Norway lobter NFP DMK TR1 108 776 77 13 132 2.98 132 776 79 77 73 52 93 356 53 532 2.99 468 2.43 140 2.83 375 Norway lobter NFP BIR TR2 645 0.78 37 13 4532 100 133 33 33 122 134 </td <td>Norway lobster</td> <td>NEP</td> <td>SCO</td> <td>TR2</td> <td>15230</td> <td>0</td> <td>0%</td> <td>10764</td> <td></td> <td>0%</td> <td>7741</td> <td></td> <td>0%</td> <td>11245</td> <td>0</td> <td>11245</td> <td>0%</td>	Norway lobster	NEP	SCO	TR2	15230	0	0%	10764		0%	7741		0%	11245	0	11245	0%
Norway lobster NEP NLD TR2 612 74 11% 939 367 28% 968 800 45% 840 414 125.3 33% Norway lobster NEP ENG TR2 1369 0 0% 112 0% 1122 0% 112 0% 120 0% 1202 0 1202 0% 1202 0% 1202 0% 1202 0% 1202 0% 120 0% 120 0% 120 0% 120 121 120 121 120 121 120 121 120 121 120 121 120 121 120 120 121 120 130 0 0% 120 0% 130 0 0% 130 0 0% 130 0 0% 130 0% 120 0% 120 0% 120 130 140 0% 15% 56 131 10%	Norway lobster	NEP	SCO	TR1	482	18	4%	587	0	0%	668		0%	579	6	585	1%
Norway lobster NLD BT2 58 0.0% 64 0.0% 29 80 73% 50 27 77 35% Norway lobster NFP ENG TR2 1369 0.0% 112 0.0% 212 0.0% 2120 0.7 828 112 0.0% 1202 0.0% 1202 0.0% 1202 0.0% 1202 0.0% 1202 0.0% 1202 0.0% 1202 0.0% 1202 0.0% 1202 0.0% 120 100 220 0.0% 220 435 424 174 529 2995 Norway lobster NEP DEU TR2 102 12 115 108 286 532 220 405 243 140 383 736 Norway lobster NEP BEL TR2 1130 130 136 531 101 176 431 396 521 101 178 343 555 130	Norway lobster	NEP	NLD	TR2	612	74	11%	939	367	28%	968	800	45%	840	414	1253	33%
Norway lobster NFP ENC TR2 1369 0 0% 112 0% 1122 0% 1122 0% 1123 0% 1123 0% 1123 0% 1123 0% 1123 0% 1123 0% 1123 0% 1123 0% 1123 1136 410 138 148 400 137 0% 274 70 248 138 138 138 138 138 137 136 275 137 137 249 72 248 444 14 145 138 136 130 230 232 249 445 143 146 148 178 138 136 130 230 232 239 445 143 445 143 445 143 445 143 445 143 445 143 445 143 445 143 445 143 445 143 445 143 445	Norway lobster	NEP	NLD	BT2	58		0%	64		0%	29	80	73%	50	27	77	35%
Norway lobster NFP NNG TR1 108 3 3% 128 0 0% 27 0% 88 1 98 1 Norway lobster NFP DNK TR1 307 96 248 337 1 0% 238 70 282 438 424 174 599 29% Norway lobster NFP DNK TR1 367 41 0% 338 0% 302 0% 445 0.44 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 1.28 1.28 0.29 46% 1.43 1.00 0.45 0.45 1.28 1.28 1.00 1.66 0.45 0.29 1.06 1.45 0.06 1.28 1.28 1.00 1.66 0.29 0.06 1.28 1.28 1.02 1.01 1.78 50 1.16 1.16 0.06 1.16 1.16	Norway lobster	NEP	ENG	TR2	1369	0	0%	1125		0%	1112		0%	1202	0	1202	0%
Norway lobster NFP DNK TR2 200 37 11% 487 18 27% 470 328 41% 415 182 597 356 16% Norway lobster NFP DEU TR2 367 41 10% 535 200 27% 370 282 43% 424 174 599 25% Norway lobster NFP PEL TR2 102 11% 27% 108 28% 552 299 46% 243 104 363 37% Norway lobster Total TR2 102 112 11% 27% 97 11% 8560 1783 178 415 363 337% 100% 8260 1783 179 0 177 90 177 90 177 96 140 906 55 31 11% 392 7 400 25% 50 96 51 11 43 12 5	Norway lobster	NEP	ENG	TR1	108	3	3%	128	0	0%	27		0%	88	1	89	1%
Norway lobster NFP DNK TR1 307 96 248 327 1 0% 249 79 24% 198 59 55 16% Norway lobster NFP NIR TR2 367 41 108 535 200 278 430 424 174 599 26% 0 445 0.0 445 0.0 445 0.0 445 0.0 445 0.0 445 0.0 445 0.0 445 0.0 445 0.0 445 0.0 445 0.0 445 0.0 440 0.05 1.01 178 160 0.0 160 120 10.1 160 160 160 10 178 160 0.0 10 178 160 0.0 12 9.8 10 155 13 194 12 9.8 10 155 13 196 12 12 14 10 10 110 10 <td>Norway lobster</td> <td>NEP</td> <td>DNK</td> <td>TR2</td> <td>290</td> <td>37</td> <td>11%</td> <td>487</td> <td>181</td> <td>27%</td> <td>470</td> <td>328</td> <td>41%</td> <td>415</td> <td>182</td> <td>597</td> <td>30%</td>	Norway lobster	NEP	DNK	TR2	290	37	11%	487	181	27%	470	328	41%	415	182	597	30%
Norway lobster NFP DEU TR2 367 41 10% 535 200 27% 370 282 436 024 114 599 29% Norway lobster NEP BIL TR2 645 0 0% 332 299 465 243 140 383 37% Norway lobster Total 1195 0 116 1560 286 512 1867 13% 15829 1002 16831 630 Sole SOL NLD BIL 819 1003 13% 776 977 117 17% 484 102 98 10.0 98 10.0 98 10.0 98 10.0 98 10.0 98 50 0.0% 51 13 19% 87 4 91 5% 50 97 171 98 66 57 63 90% 50 135 51 13 53% 53 5	Norway lobster	NEP	DNK	TR1	307	96	24%	337	1	0%	249	79	24%	298	59	356	16%
Norway lobster NEP NR TR2 645 0 0% 388 0% 352 0% 445 0 37 0 128 1010 138 102 1010 101	Norway lobster	NEP	DEU	TR2	367	41	10%	535	200	27%	370	282	43%	424	174	599	29%
Norway lobster NEP BEL TR2 102 12 11% 2275 108 28% 352 299 46% 243 140 383 37% Norway lobster Total 19569 280 1% 15630 858 5% 1228 1867 13% 1582 100 216831 6% Sole SOL NLD BT2 8919 1308 13% 7767 977 11% 8560 178 175 987 140 985 12 98 110 895 501 101 17% 460 10 985 501 812 98 110 895 501 101 17% 769 140 908 15% 501 501 501 817 711 966 6 57 63 90% 501 113 2% 52 1 53 2% 50 50 71 12 66 57 63 90%	Norway lobster	NFP	NIR	TR2	645	0	0%	388		0%	302	-	0%	445	0	445	0%
Normany lobits Title Lob Line Lob Sole Sole Sole Lob Sole	Norway lobster	NEP	BEI	TR2	102	12	11%	275	108	28%	352	299	46%	2/13	140	383	37%
Normany product close NLD BT2 12020 120	Norway lobster Tota			1112	10560	280	11/0	15630	858	5%	12287	1867	13%	15820	1002	16831	6%
Sole Sol NLD SN12 B32 L36 L36 L36 L36 L36 L36 L36 L46 Sole SOL NLD GRAN 115 0 0% 90 0% 220 0% 12 98 110 89% Sole SOL BEL BT2 1074 126 115 731 191 215 501 101 17% 769 140 998 15% Sole SOL BEL BT2 1074 126 11% 731 191 13% 655 13 13% 392 7 40 98% 50 506 SOL BEL BEAM 7 0 0% 50 0 75 11% 332 7 400 258 50 50 50 11% 332 7 400 258 50 50 50 50 7 7 36 250 148	Solo			ртр	2010	1200	12%	7767	007	110/	9560	1702	17%	9/15	1262	0779	1.4%
Sole SOL NLD BRAM 115 0.0% 123 0 0.0% 121 98 110 898 Sole SOL BEL BT2 1074 126 11% 0.0% 501 101 17% 769 140 908 15% Sole SOL BEL BTZ 118 0.0% 55 0 0.0% 7 171 96% 6 577 63 908 Sole SOL ENG BTZ 561 15 3% 353 5 1% 43 2.52 1 53 252 52 52 1 53 2.52 1 53 2.52 52 1 53 2.55 52 150 516 500 0.0% 146 0.0 146 0.0 146 0.0 146 0.0 146 0.0 146 0.0 146 0.0 146 0.0 146 0.0 146	Sole	SOL			165	1500	15%	152	997	11%	220	1/02	17%	0415	1502	9770	14%
Sole Sol Sole	Sole	SOL			105	0	0%	122	0	0%	220	204	070	179	0	1/9	0%
Sole Sole Sole BL B12 10/4 1/2 1/3<	Sole	SUL	NLD	BEAIVI	15	0	0%	9	0	0%	13	294	90%	12	98	110	89%
Sole Sole BL IR2 118 0 08 88 0 0% 55 13 19% 87 4 91 55 Sole SOL EHL PEAM 7 0 0% 55 0 0% 55 13 19% 87 4 91 55 Sole SOL ENG TR2 447 13% 655 1 1% 43 1 2% 52 1 53 226 1 53 286 50 DIC DEU BT2 349 18 100 0% 118 0.05 118 0.06 160 0.06 146 0.0 146 0.0 146 0.0 146 0.0 146 0.0 146 0.0 146 0.0 146 0.0 146 0.0 146 0.0 146 0.0 146 0.0 146 0.0 146 0.0 146 0	Sole	SOL	BEL	BIZ	1074	126	11%	/31	191	21%	501	101	1/%	/69	140	908	15%
Sole Sole BEL BEAM 7 0 %% 5 0 % 7 171 95% 6 57 63 90% Sole SOL ENG TR2 47 1 3% 53 1% 32 7 400 2% Sole SOL DEU BT2 349 25 7% 177 28 1% 43 1 2% 52 1 53 2% Sole SOL DEU BT2 349 25 7% 177 28 1% 43 1 2% 52 1 53 2% Sole SOL DRK GT1 223 8 4% 440 0 0% 322 0 0% 352 0 352 0 352 0 352 0 352 0 352 0 352 0 352 0 352 0 352 0 <td>Sole</td> <td>SOL</td> <td>BEL</td> <td>TR2</td> <td>118</td> <td>0</td> <td>0%</td> <td>88</td> <td>0</td> <td>0%</td> <td>55</td> <td>13</td> <td>19%</td> <td>87</td> <td>4</td> <td>91</td> <td>5%</td>	Sole	SOL	BEL	TR2	118	0	0%	88	0	0%	55	13	19%	87	4	91	5%
Sole SOL ENG BT2 561 15 3% 353 5 1% 262 3 1% 292 7 400 2% Sole SOL ENG TR2 47 1 3% 65 1 1% 43 1 2% 52 1 32 8 Sole SOL DEU GR1 151 0% 126 0 0% 160 0 0% 146 0 146 0% 352 0 352 0 352 0 352 0% 352 0 352 0% 352 0 352 0% 352 0 352 0% 352 0 352 0% 353 5% 375 3% 2652 213 45% 113 353 8% 45% 133 35 45% 133 35 14% 147 138 468 45% 144 400 146 <td>Sole</td> <td>SOL</td> <td>BEL</td> <td>BEAM</td> <td>7</td> <td>0</td> <td>0%</td> <td>5</td> <td>0</td> <td>0%</td> <td>7</td> <td>171</td> <td>96%</td> <td>6</td> <td>57</td> <td>63</td> <td>90%</td>	Sole	SOL	BEL	BEAM	7	0	0%	5	0	0%	7	171	96%	6	57	63	90%
Sole SOL ENG TR2 47 1 3% 65 1 1% 43 1 2% 52 1 53 2% Sole SOL DEU BT2 349 25 7% 177 28 14% 259 19 7% 622 24 286 9% Sole SOL FRA GT1 223 8 4% 440 0.0% 509 3 13% 391 4 395 1% Sole Total T 1196 1484 11% 10222 121 11% 10971 289 18% 11063 169 12761 13% Hake HKE SCO TR1 1728 593 26% 2152 77 3% 2076 0% 427 0 0% 420 1001 22% Hake HKE SCO TR1 1119 0% 378 0% 423	Sole	SOL	ENG	BT2	561	15	3%	353	5	1%	262	3	1%	392	7	400	2%
Sole SOL DEU BT2 349 25 7% 177 28 14% 259 19 7% 262 24 286 9% Sole SOL GN1 151 0% 126 0 0% 160 0 0% 146 0 146 0% 146 0% 146 0% 146 0% 146 0% 146 0% 146 0% 146 0% 146 0% 146 0% 146 0% 148 0% 148 148 148 140 0% 178 313 148 1278 132 178 352 0% 313 36 6% 113 30% 148 148 1001 106 178 30 465 2178 935 3113 30% 148 1420 148 1420 148 1420 148 1420 148 1420 148 1420 144 143	Sole	SOL	ENG	TR2	47	1	3%	65	1	1%	43	1	2%	52	1	53	2%
Sole DEU GN1 151 0% 126 0 0% 160 0 0% 146 0 146 0 146 0 146 0 146 0% 150 Sole SOL DINK GN1 323 8 4% 440 0 0% 382 0 0% 352 0 352 0% 352 0% 352 0% 352 0% 331 384 1406 1508 12761 13% Hake HKE SCO TR1 1728 593 26% 2125 75 3% 0625 2138 45% 1303 396 442 0 0% 762 0% 762 0% 78 0 0% 423 0 0% 403 0 403 0 403 0 403 0 403 0 403 0 403 0 403 0 403 146	Sole	SOL	DEU	BT2	349	25	7%	177	28	14%	259	19	7%	262	24	286	9%
Sole FRA GT1 223 8 4% 440 0 0% 509 3 1% 391 4 395 1% Sole DNK GN1 366 -0% 307 0 0% 382 0 0% 352 0% 352 0% Sole Total	Sole	SOL	DEU	GN1	151		0%	126	0	0%	160	0	0%	146	0	146	0%
Sole SNK GN1 366 307 0 0% 382 0 352 0.0 352 0% Sole Total	Sole	SOL	FRA	GT1	223	8	4%	440	0	0%	509	3	1%	391	4	395	1%
Sole Total I11996 1484 11% 10222 12121 11% 10971 2389 18% 11063 1698 12761 13% Hake HKE SCO TR1 1728 593 26% 2155 75 3% 2652 2138 45% 2178 935 311 3% Hake KE SCO TR2 82 1 1% 70 0 % 31 58 65% 661 20 818 25% Hake MKE DNK TR1 1419 533 27% 1387 468 25% 1637 200 1% 144 420 1901 22% Hake HKE DEU TR1 2155 43 146 273 1553 85% 130 15 468 668 668 668 668 668 668 668 668 668 668 668 668 668 668	Sole	SOL	DNK	GN1	366		0%	307	0	0%	382	0	0%	352	0	352	0%
HARE KE SCO TR1 1728 593 26% 2155 75 3% 2652 2138 45% 2178 935 3113 30% Hake HKE SCO L11 1131 0% 727 0 % 427 0 % 762 0% 762 % 183 Hake HKE SCO TR2 82 1 1% 70 0 % 311 30% 762 0% 762 % 143 25% 1637 260 14% 1431 0 12% 14% 12% 1387 468 25% 1637 20 403 0 403 0 403 0 403 10% 406 140 140 1313 30% 413 30% 413 30% 413 10% 413 10% 413 10% 413 10% 413 10% 413 10% 414 10%	Sole Total				11996	1484	11%	10222	1221	11%	10971	2389	18%	11063	1698	12761	13%
Hake HKE SCO LL1 1131 0% 727 0 0% 427 0 0% 762 0 762 0 762 0% 763 <	Hake	HKE	SCO	TR1	1728	593	26%	2155	75	3%	2652	2138	45%	2178	935	3113	30%
HAKe HKE SCO TR2 82 1 1% 70 0 0% 31 58 65% 61 20 81 25% Hake HKE DNK TR1 1419 533 27% 1387 468 25% 1637 260 14% 1481 420 1901 22% Hake HKE DNK GN1 406 0% 378 0% 423 0 0% 403 0% 403 0% Hake HKE DEU TR1 237 7 3% 390 45 10% 470 3 1% 366 18 384 5% Hake HKE FRA L11 93 0% 40 0 0% 73 0 0% 688 0% 618 338 Hake TR1 1215 18% 5625 210 28% 6236 2648 3% 568 0	Hake	нке	SCO	LL1	1131		0%	727	0	0%	427	0	0%	762	0	762	0%
Hake HKE DNK TR1 1419 533 27% 1387 468 25% 1637 260 14% 1481 420 1901 22% Hake HKE DNK GN1 406 0% 378 0 0% 423 0 0% 403 0 403 0% Hake HKE DUU TR1 255 43 14% 273 1553 85% 370 42 10% 299 546 845 65% Hake HKE FRA TR1 217 7 3% 390 45 10% 470 3 1% 366 18 348 5% Hake HKE FRA TR1 121 30 20% 156 5 3% 124 143 54% 134 59 193 31% Hake HKE SUE TR1 378 0% 1413 0% 30%	Hake	нке	sco	TR2	82	1	1%	70	0	0%	31	58	65%	61	20	81	25%
Hake HKE DNK GN1 406 0% 378 0 0% 423 0 0% 403 0 403 0% Hake HKE DEU TR1 255 43 14% 273 1553 85% 370 42 10% 299 546 845 65% Hake HKE FRA TR1 237 7 3% 390 45 10% 470 3 1% 366 18 384 5% Hake HKE FRA Ll1 93 0% 40 0 0% 73 0 0% 68 0 68 0% 68 0 68 0% 142 143 5% 134 59 133 31% 636 66 0% 1428 Hake 134 578 2024 781 26% 264 30% 5786 2024 781 26% 26 0% 304	Hake	нке	DNK	TR1	1419	533	27%	1387	468	25%	1637	260	14%	1481	420	1901	22%
Hake HKE DEU TR1 225 43 14% 273 153 85% 370 42 10% 229 546 845 65% Hake HKE FRA TR1 237 7 3% 390 45 10% 470 3 1% 366 18 384 5% Hake HKE FRA LL1 93 0% 40 0 0% 73 0 0% 68 0 68 0% Hake HKE FRA LL1 93 0% 49 64 57% 30 5 14% 134 59 193 31% Hake HKE SWE TR1 26 9 25% 49 64 57% 30 5 14% 562 210 28% 6236 2648 30% 5786 2024 7818 26% Anglerfish ANF SCO TR1	Hake	нке	DNK	GN1	406		0%	378	0	0%	423	0	0%	403	0	403	0%
Hake HKE FRA TR1 237 7 3% 390 45 10% 470 3 1% 366 18 384 5% Hake HKE FRA Ll1 93 0% 40 0 0% 73 0 0% 68 0 68 0% Hake HKE ENG TR1 121 30 20% 156 5 3% 124 143 54% 134 59 193 31% Hake HKE ENG TR1 121 30 20% 156 5 3% 124 143 54% 134 59 193 31% Hake HKE SWE TR1 26 9 25% 49 64 57% 30 5 14% 35 26 61 42% Hake TR1 3878 0% 4143 0% 3044 0% 3688 0 3688 0% Anglerfish ANF SCO TR1 1339 0%	Hake	нке	DEU	TR1	255	43	14%	273	1553	85%	370	42	10%	299	546	845	65%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hake	HKF	FRA	TR1	237	7	3%	390	45	10%	470	3	1%	366	18	384	5%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hake	HKE	FRA	111	93		0%	40	0	0%	73	0	0%	68	-0	68	0%
Hake HakeHKE KEENGFR11213013013011414114113435134351313178Hake TotalSCOTR126925%496457%30514%35266142%AnglerfishANFSCOTR138780%41430%30440%368803688036880%AnglerfishANFSCOGN18460%107800%108000%1001010010%AnglerfishANFSCOTR211390%8620%5720%85808580%AnglerfishANFDNKTR1130960%114410%120191%1218512230%AnglerfishANFDNKGN1390%24600%19000%22902290%AnglerfishANFENGTR11330%1400%370%510510%AnglerfishANFENGTR11330%1400%370%510510%AnglerfishANFENGTR11330%1400%370%510510%AnglerfishANFENGTR2570%	Hake	HKE	ENG	TR1	121	30	20%	156	5	3%	124	143	54%	134	59	193	31%
Hake Total Second TR1 20 5 23% 43 64 57% 56 3 14% 53 20 61 42% Hake Total 5498 1215 18% 5625 2210 28% 66236 2648 30% 5786 2024 7811 26% Anglerfish ANF SCO TR1 3878 0% 4143 0% 3044 0% 3688 0 368 0 36 0 36 46 36 46 36 0 36 1001 0 1001 0 36 862 0% 572 0% 858 0 36 1023 10% 1218	Hake	HKE	SW/F	TR1	26	30	20%	130	64	57%	30	145	1/1%	25	26	61	12%
Ander Fordat SAPS 1215 18% 3623 2210 28% 6236 2048 57% 2786 2024 7411 28% Anglerfish ANF SCO TR1 3878 0% 4143 0% 3044 0% 3688 0 3688 0 3688 0 3688 0% Anglerfish ANF SCO GN1 846 0% 1078 0 0% 1080 0 0% 1001 0 1001 0% Anglerfish ANF SCO TR2 1139 0% 862 0% 572 0% 858 0 858 0% Anglerfish ANF DNK TR1 1309 6 0% 1144 1 0% 1201 9 1% 1218 5 1223 0% Anglerfish ANF DNK GN1 39 0% 90 0% 84 0 0% 71 0 71 0% Anglerfish ANF ENG TR1 133	Hake Total	TIKL	JVVL	INI	E 409	1215	100/	E625	2210	2770 200/	6226	7649	200/	53	20	7011	42/0
Angleritsh ANF SCO IN1 3878 0% 4143 0% 3044 0% 5088 0 5088 0% 5088 0% Angleritsh ANF SCO GN1 846 0% 1078 0% 1080 0% 1001 0 1001 0% Angleritsh ANF SCO TR2 1139 0% 862 0% 572 0% 858 0 858 0% Angleritsh ANF DNK TR1 1309 6 0% 1144 1 0% 572 0% 858 0 858 0% Angleritsh ANF DNK GN1 39 0% 90 0% 844 0 0% 71 0 71 0% Angleritsh ANF ENG GN1 249 0% 246 0% 190 0% 229 0 229 0% 249 0% 140 0% 70 0% 114 0% 144 0% 144 0%	Anglorfich		500	TD1	2430	1215	10%	J02J 4142	2210	20%	2044	2040	30%	3780	2024	2600	20%
Angleritish ANF SCO GN1 846 0% 1078 0 0% 1080 0 0% 1001 0 1001 0% Angleritish ANF SCO TR2 1139 0% 862 0% 572 0% 858 0 858 0% Angleritish ANF DNK TR1 1309 6 0% 1144 1 0% 1201 9 1% 1218 5 1223 0% Angleritish ANF DNK GN1 39 0% 90 0 0% 844 0 0% 71 0 71 0% Angleritish ANF ENG GN1 249 0% 140 0% 190 0 0% 229 0 229 0% 209 0% 200 0% 114 0 114 0% 114 0% 114 0% 114 0% 101 0 101 0% 106 0% 37 0% 51 0 51	Anglerish		300		50/0		0%	4145	0	0%	5044	0	0%	2000	0	3000	0%
Angleritish ANF SCO IR2 1139 0% 862 0% 572 0% 888 0 858 0% Angleritish ANF DNK TR1 1309 6 0% 1144 1 0% 1201 9 1% 1218 5 1223 0% Angleritish ANF DNK GN1 39 0% 90 0 0% 844 0 0% 71 0 71 0% Angleritish ANF ENG GN1 249 0% 140 0% 190 0 0% 229 0 229 0% Angleritish ANF ENG TR1 133 0% 140 0% 70 0% 114 0 114 0% Angleritish ANF ENG TR1 133 0% 140 0% 37 0% 51 0 51 0% 10% Angleritish ANF ENG TR2 57 0% 105 0 0%	Angierrish	ANF	SCO	GNI	846		0%	1078	0	0%	1080	0	0%	1001	0	1001	0%
Angleffish ANF DNK IR1 1309 6 0% 1144 1 0% 1201 9 1% 1218 5 1223 0% Angleffish ANF DNK GN1 39 0% 90 0 0% 84 0 0% 71 0 71 0% 71	Anglerfish	ANF	SCO	TRZ	1139		0%	862		0%	572		0%	858		858	0%
Anglerfish ANF DNK GN1 39 0% 90 0% 84 0 0% 71 0 71 0% Anglerfish ANF ENG GN1 249 0% 246 0 0% 190 0 0% 229 0 229 0% Anglerfish ANF ENG TR1 133 0% 140 0% 70 0% 114 0 114 0% Anglerfish ANF ENG TR1 133 0% 60 0% 37 0% 51 0 51 0% Anglerfish ANF ENG TR2 57 0% 60 0% 37 0% 51 0 191 0% Anglerfish ANF ELO GN1 207 0% 105 0 0% 117 0% 90 0 90 0% 0% Anglerfish ANF BEL BT1 68 0% 755 0% 117 0% 90% 7511 <	Anglerfish	ANF	DNK	TR1	1309	6	0%	1144	1	0%	1201	9	1%	1218	5	1223	0%
Anglertish ANF ENG GN1 249 0% 246 0 0% 190 0 0% 229 0 229 0% Anglerfish ANF ENG TR1 133 0% 140 0% 70 0% 114 0 114 0% Anglerfish ANF ENG TR2 57 0% 60 0% 37 0% 51 0 51 0% Anglerfish ANF ENG TR2 57 0% 105 0 0% 260 0 0% 191 0 191 0% Anglerfish ANF BEL BT1 68 0% 85 0 0% 117 0% 90 0 90 0% Anglerfish Total V 7924 6 0% 7924 10% 6654 9 0% 7511 5 7516 0% Ling LIN SCO <td>Anglertish</td> <td>ANF</td> <td>DNK</td> <td>GN1</td> <td>39</td> <td></td> <td>0%</td> <td>90</td> <td>0</td> <td>0%</td> <td>84</td> <td>0</td> <td>0%</td> <td>71</td> <td>0</td> <td>71</td> <td>0%</td>	Anglertish	ANF	DNK	GN1	39		0%	90	0	0%	84	0	0%	71	0	71	0%
Anglerfish ANF ENG TR1 133 0% 140 0% 70 0% 114 0 114 0% Anglerfish ANF ENG TR2 57 0% 60 0% 37 0% 51 0 51 0% Anglerfish ANF DEU GN1 207 0% 105 0 0% 260 0 0% 191 0 191 0% Anglerfish ANF BEL BT1 68 0% 85 0 0% 117 0% 90 0 90 0% 0% Anglerfish Total V 7924 6 0% 7954 1 0% 6654 9 0% 7511 5 7516 0% Ling LIN SCO TR1 1643 3455 68% 1792 158 8% 1780 114 6% 1739 1242 2981 42%	Anglerfish	ANF	ENG	GN1	249		0%	246	0	0%	190	0	0%	229	0	229	0%
Anglerfish ANF ENG TR2 57 0% 60 0% 37 0% 51 0 51 0% Anglerfish ANF DEU GN1 207 0% 105 0 0% 260 0 0% 191 0 191 0% Anglerfish ANF BEL BT1 68 0% 85 0 0% 117 0% 90 0 90 0% 0% Anglerfish Total 7924 6 0% 7954 1 0% 6654 9 0% 7511 5 7516 0% Ling LIN SCO TR1 1643 3455 68% 1792 158 8% 1780 114 6% 1739 1242 2981 42% Ling LIN SCO LL1 124 0% 91 0% 88 0% 0% 101 0 101 0%	Anglerfish	ANF	ENG	TR1	133		0%	140		0%	70		0%	114	0	114	0%
Anglerfish Anglerfish ANF ANF DEU GN1 207 0% 105 0 0% 260 0 0% 191 0 191 0% Anglerfish ANF BEL BT1 68 0% 85 0 0% 117 0% 90 0 90 0% 0% Anglerfish Total 7924 6 0% 7954 1 0% 6654 9 0% 7511 5 7516 0% Ling LIN SCO TR1 1643 3455 68% 1792 158 8% 1780 114 6% 1739 1242 2981 42% Ling LIN SCO LL1 124 0% 91 0% 88 0 0% 101 0 101 0%	Anglerfish	ANF	ENG	TR2	57		0%	60		0%	37		0%	51	0	51	0%
Anglerfish ANF BEL BT1 68 0% 85 0 0% 117 0% 90 0 90 0% 0% Anglerfish Total	Anglerfish	ANF	DEU	GN1	207		0%	105	0	0%	260	0	0%	191	0	191	0%
Anglerfish Total 7924 6 0% 7954 1 0% 6654 9 0% 7511 5 7516 0% Ling LIN SCO TR1 1643 3455 68% 1792 158 8% 1780 114 6% 1739 1242 2981 42% Ling LIN SCO LL1 124 0% 91 0 0% 88 0 0% 101 0 100 0%	Anglerfish	ANF	BEL	BT1	68		0%	85	0	0%	117		0%	90	0	90	0%
Ling LIN SCO TR1 1643 3455 68% 1792 158 8% 1780 114 6% 1739 1242 2981 42% Ling LIN SCO LL1 124 0% 91 0 0% 88 0 0% 101 0 101 0%	Anglerfish Total				7924	6	0%	7954	1	0%	6654	9	0%	7511	5	7516	0%
Ling LIN SCO LL1 124 0% 91 0 0% 88 0 0% 101 0 101 0%	Ling	LIN	SCO	TR1	1643	3455	68%	1792	158	8%	1780	114	6%	1739	1242	2981	42%
	Ling	LIN	SCO	LL1	124		0%	91	0	0%	88	0	0%	101	0	101	0%

Table A.3.1 North Sea || demersal fisheries - continued

Table A.S.1 NUIT	n sea	uemersa	a fishenes	- contin	ueu											
SPEC_NAME	SPECI	COUNTRY	REG_GEAR	2010	2010	2010	2011	2011	2011	2012	2012	2012	Avg	Avg	Avg	Avg
	ES			Landing	Discard	%DR	Landing	Discard	%DR	Landing	Discard	%DR	2010-	2010-	2010-	2010-
													2012	2012	2012	2012
													Landing	Discard	Catch	%DR
Ling	LIN	sco	TR2	114	1	1%	73		0%	48	0	0%	78	1	79	1%
Ling	LIN	sco	GN1	49	1	2%	54	0	0%	64	1	1%	56	1	56	1%
Ling	LIN	DNK	TR1	436	0	0%	547	3	1%	424	0	0%	469	1	470	0%
Ling	LIN	ENG	TR1	113	397	78%	118	6	5%	79	8	9%	103	137	240	57%
Ling	LIN	DEU	TR1	44	15	25%	66	126	66%	62	2	3%	58	48	105	45%
Ling	LIN	FRA	TR1	49	0	0%	87	1	1%	107	0	0%	81	1	81	1%
Ling Total				2572	3869	60%	2828	294	9%	2653	125	5%	2684	1429	4113	35%
Lemon sole	LEM	NLD	BT2	165	213	56%	315	270	46%	295	938	76%	258	474	732	65%
Lemon sole	LEM	NLD	TR1	98	3	3%	247	8	3%	204	78	28%	183	30	213	14%
Lemon sole	LEM	NLD	TR2	37	4	10%	31	47	60%	28	11	27%	32	21	53	39%
Lemon sole	LEM	DNK	TR1	740	27	4%	916	22	2%	934	7	1%	864	19	882	2%
Lemon sole	LEM	SCO	TR1	343	6	2%	407	21	5%	379	37	9%	376	21	398	5%
Lemon sole	LEM	SCO	TR2	206	34	14%	240	26	10%	158	54	26%	201	38	239	16%
Lemon sole	LEM	ENG	TR1	133	2	2%	200	8	4%	204	21	9%	179	10	190	6%
Lemon sole	LEM	ENG	BT2	107	6	5%	129	1	0%	103	1	1%	113	2	115	2%
Lemon sole	LEM	ENG	TR2	75	13	15%	104	14	12%	91	28	24%	90	18	108	17%
Lemon sole	LEM	BEL	BT1	187		0%	260	10	4%	317		0%	255	3	258	1%
Lemon sole	LEM	BEL	BT2	92	38	29%	103	41	28%	69	101	59%	88	60	148	40%
Lemon sole	LEM	DEU	BT2	4	124	97%	9	70	89%	8	18	70%	7	71	77	91%
Lemon sole	LEM	DEU	TR1	59	2	4%	47	59	56%	35	5	12%	47	22	69	32%
Lemon sole Total			0.770	2248	473	17%	3006	596	17%	2824	1297	31%	2693	789	3481	23%
Turbot	TUR	NLD	BIZ	1038	2	0%	1335	48	3%	1462	101	6%	12/8	50	1329	4%
	TUR	NLD	TRZ	6/	0	0%	82	0	0%	98	0	0%	82	0	82	0%
Turbot	TUR	NLD	TR1	41	0	0%	51	0	0%	226	0	0%	56	0	262	0%
Turbot	TUR	DNK	GN1	240	0	0%	299	3	1%	236	10	4%	259	4	263	2%
Turbot	TUR			167	0	0%	1//	1	0%	105	0	0%	1/0	0	1/0	0%
Turbot	TUR			180	0	0%	155	0	0%	130	0	0%	157	0	157	0%
Turbot				49	0	0%	60		20%	05	1	10/		1		0%
Turbot				92	0	0%	65	2	5% 0%	01 71	1	1%	70	1	79 60	2%
Turbot	TUR			71	0	0%	60	2	2%	51	0	7%	65		69	2%
Turbot	TUR	SCO		68	0	0%	76	0	3% 0%	58	4	0%	67	2	67	0%
Turbot Total	TOK	500	INI	2089	3	0%	2430	57	2%	2500	116	4%	2340	59	2398	2%
Megrims	LE7	sco	TR1	1335	5	0%	1309	57	0%	1333	110	%	1325	0	1325	0%
Megrims Total		500	1111	1335		0%	1309		0%	1333		0%	1325	0	1325	0%
Pollack	POL	SCO	TR1	343	1	0%	310	0	0%	385		0%	346	0	346	0%
Pollack	POL	DEU	TR1	118	292	71%	58	0	0%	85	1	1%	87	98	184	53%
Pollack	POL	ENG	TR1	178	0	0%	166	0	0%	38	0	0%	127	0	127	0%
Pollack	POL	FRA	TR1	37	248	87%	2	0	0%	2		0%	14	83	96	86%
Pollack	POL	DNK	TR1	92	0	0%	64	0	0%	90	1	2%	82	0	82	1%
Pollack Total				769	541	41%	600	1	0%	599	3	0%	656	181	837	22%
Northern prawn	PRA	DNK	OTTER	110		0%	258		0%	163	1	1%	177	0	178	0%
Northern prawn	PRA	SWE	OTTER	141		0%	143		0%	123	1	1%	136	0	136	0%
Northern prawn To	tal			251		0%	402		0%	286	2	1%	313	1	314	0%
Greenland halibut	GHL	FRA	TR1	95	0	0%	54	0	1%	57		0%	69	0	69	0%
Greenland halibut	GHL	SCO	TR1	71		0%	47		0%	56		0%	58	0	58	0%
Greenland halibut 1	otal			166	0	0%	102	0	0%	114		0%	127	0	127	0%
Brill	BLL	BEL	BT2	85	0	0%	68	5	6%	50	2	4%	68	2	70	3%
Brill Total				85	0	0%	68	5	6%	50	2	4%	68	2	70	3%
Tusk	USK	SCO	TR1	71		0%	73		0%	65		0%	70	0	70	0%
Tusk Total				71		0%	73		0%	65		0%	70	0	70	0%
Grand Total				216766	118097	35%	221505	205792	48%	217870	121148	36%	218714	148346	367059	40%
Table A.3.2 North Sea || industrial and pelagic fisheries: landings and discards per species and year and area (tonnes). Table sorted in descending order on average catch 2010-2012. Only country and gear combination where average 2010-2012 catch larger than 50 t.

SPEC NAME	SPECI	COUNTRY	REG GEAR	2010	2010	2010	2011	2011	2011	2012	2012	2012	Avg	Avg	Avg	Avg
- · · _	ES			Landing	Discard	%DR	Landing	Discard	%DR	Landing	Discard	%DR	2010-	2010-	2010-	2010-
				0						0			2012	2012	2012	2012
													Landing	Discard	Catch	%DR
Candool	CAN	DNIK	ΟΤΤΓΡ	100000	0	00/	105212	0	00/	44427	0	00/	122207	0	122207	00/
Sandeel	SAN			189882	0	0%	105312	0	0%	44427	0	0%	133207	0	133207	0%
Sandeel	SAN		TD2	12003		0%	19003		0%	3830		0%	12832	0	12832	0%
Sandeel	SAN		183	360		0%	140		0%	1540		0%	084 F 4 1	0	D84	0%
Sandeel	SAN		none	22021	0	0%	1518	0	0%	59	0	0%	22454	0	22454	0%
Sandeel	SAN	SWE	OTTER	32021	0	0%	32690	0	0%	1700	0	0%	23454	0	23454	0%
Sandeel	SAN		DEL TRAM	3393	0	0%	1605	0	0%	1700	0	0%	1602	0	1602	0%
Sandeel	SAN			3380	0	0%	1095	0	0%			0%	2250	0	2250	0%
Sandeel	SAN		OTTER	3900	0	0%	2205	0	0%			0%	3350	0	3350	0%
Sandeel	SAN			600	0	0%	2295	0	0%	212		0%	905	0	905	0%
Sandeel Tetal	SAN	NLD	PEL_IRAW	255210	0	0%	220057	0	0%	512	0	0%	102222	0	102222	0%
Sandeer Total		DNIK		255310	0	0%	230857	0	0%	2/222	190	10/	183233	10	183233	0%
Herring				24476		0%	29823		0%	17845	480	1%	44715	201	44877	0%
Herring				9292		0%	13954		0%	1/849	98	1%	13800	33	13832	0%
Herring			183			0%	1125		0%	2020		0%	673	0	673	0%
Herring	HER	DINK		010		0%	1135		0%	/59		0%	631	0	631	0%
Herring	HER		PEL_SEINE	816		0%	25		0%	985	202	0%	609	120	244.00	0%
Horring			DEL TRAM	10002		0%	24629		0%	22602	383	1%	34038	128	34166	0%
nerring		500	PEL_IKAW	10862		0%	1275		0%	32692	120	0%	19436	40	19476	0%
Herring	HER	SCU		297		0%	1275		0%	946	0	0%	839	0	839	0%
Herring	HER	ENG	PEL_TRAW	8957		0%	9303		0%	16539	61	0%	11600	20	11620	0%
Herring	HER	SWE	PEL_SEINE	3405		0%	5611		0%	/340		0%	5452	0	5452	0%
Herring	HER	SWE	PEL_TRAW	990		0%	2625		0%	6/52	99	1%	3456	33	3489	1%
Herring	HER	DEU	PEL_IRAW	1080		0%	4318		0%	17704	20	0%	//01	/	//0/	0%
Herring	HER	DEU		1420		0%			0%			0%	4/3	0	4/3	0%
Herring	HER	FRA	PEL_IRAW	16/		0%	5221		0%	15462	60	0%	6950	20	6970	0%
Herring	HER	FRA	TR2	351		0%	198		0%	259	0	0%	270	0	270	0%
Herring	HER	NIR	PEL_IRAW	3354		0%	2657		0%	5567	27	0%	3859	9	3868	0%
Herring Total				84818		0%	115526		0%	263157	1355	1%	154500	452	154952	0%
Mackerel	MAC	SCO	PEL_IRAW	41/61		0%	51475		0%	55975	4124	/%	49/3/	1375	51112	3%
Mackerel	MAC	SCO	PEL_SEINE			0%	1968		0%	/18		0%	896	0	896	0%
Mackerel	MAC	SCO	OTTER	1820		0%	//0		0%	57	0	0%	883	0	883	0%
Mackerel	MAC	SCO	TR1	8	//1	99%	29	2	/%	34	6	14%	24	260	283	92%
Mackerel	MAC	DNK	PEL_IRAW	13552		0%	10285		0%	19629	1117	5%	14488	372	14860	3%
Mackerel	MAC	DNK	PEL_SEINE	24105		0%	10150		0%	2702		0%	12319	0	12319	0%
Mackerel	MAC	DNK	OTTER	2/19		0%	55		0%	57	0	0%	944	0	944	0%
Mackerel	MAC	DNK	LL1	288		0%	227		0%	390		0%	302	0	302	0%
Mackerel	MAC	IRL	PEL_IRAW	14639		0%	15961		0%	20426	269	1%	1/009	90	1/098	1%
Mackerel	MAC	IRL				0%	1395		0%			0%	465	0	465	0%
Mackerel	MAC	ENG	PEL_IRAW	3618		0%	6995		0%	10971	183	2%	/194	61	/255	1%
Mackerel	MAC	ENG	OTTER		100	0%	2188		0%	_		0%	/29	0	/29	0%
Iviackerei	MAC	ENG		4	196	98%	12	1	5%	7	1	18%	8	66	/4	90%
Iviackerei	MAC		PEL_IRAW	898	400	0%	9//9		0%	5648	604	10%	5442	201	5643	4%
Iviackerei	MAC		TR1	53	193	/8%	63	1400	96%	189	2/4	59%	102	623	/24	86%
IVIackerel	MAC			235	0	0%	193	0	0%	183	23	11%	204	8	211	4%
IVIackerel	MAC	NIK	PEL_IRAW	3476		0%	6398		0%	6429	628	9%	5434	209	5644	4%
Iviackerel	MAC	NIR	PEL_SEINE	1025		0%			0%			0%	342	0	342	0%
Mackerel	MAC	NIK	UTER	212		0%			0%			0%	71	0	71	0%
Mackerel	MAC	DEU	PEL_TRAW	2495		0%	5282		0%	4474	56	1%	4083	19	4102	0%
Iviackerel	MAC	DEU	IK1	7	10	59%	5	129	96%	6	8	58%	6	49	55	89%
			IPEL SEINE	2560		0%	2551		0%	3090		0%	2734	0	2734	0%
Mackerel	MAC	SVVL				· ·			~~ · · ·				=	~~~		J/0/
Mackerel	MAC MAC	SWE	PEL_TRAW	595		0%	420		0%	1180	114/	49%	732	382	1114	34/0
Mackerel Mackerel	MAC MAC MAC	SWE FRA	PEL_TRAW	595 5		0% 0%	420		0% 0%	4815	1147 78	49% 2%	732 1617	382 26	1114 1643	2%
Mackerel Mackerel Mackerel Mackerel	MAC MAC MAC MAC	SWE FRA FRA	PEL_TRAW PEL_TRAW TR2	595 5 798	0	0% 0% 0%	420 31 917	0	0% 0% 0%	4815 986	1147 78 27	49% 2% 3%	732 1617 900	382 26 9	1114 1643 909	2% 1%
Mackerel Mackerel Mackerel Mackerel Mackerel Total	MAC MAC MAC MAC	SWE FRA FRA	PEL_TRAW PEL_TRAW TR2	595 5 798 114873	0 1170	0% 0% 0% 1%	420 31 917 127149	0 1532	0% 0% 0% 1%	4815 986 137965	1147 78 27 8545	49% 2% 3% 6%	732 1617 900 126662	382 26 9 3749	1114 1643 909 130411	2% 1% 3%
Mackerel Mackerel Mackerel Mackerel Mackerel Total Sprat	MAC MAC MAC MAC SPR	SWE FRA FRA DNK	PEL_TRAW PEL_TRAW TR2 PEL_TRAW	595 5 798 114873 104101	0 1170	0% 0% 0% 1%	420 31 917 127149 102177	0 1532	0% 0% 0% 1% 0%	1180 4815 986 137965 53089	1147 78 27 8545	49% 2% 3% 6% 0%	732 1617 900 126662 86456	382 26 9 3749 0	1114 1643 909 130411 86456	2% 1% 3% 0%
Mackerel Mackerel Mackerel Mackerel Mackerel Total Sprat Sprat	MAC MAC MAC MAC SPR SPR	SWE FRA FRA DNK DNK	PEL_TRAW PEL_TRAW TR2 PEL_TRAW TR3	595 5 798 114873 104101 23035	0 1170	0% 0% 1% 0% 0%	420 31 917 127149 102177 16625	0 1532	0% 0% 1% 0% 0%	1180 4815 986 137965 53089 13865	1147 78 27 8545	49% 2% 3% 6% 0% 0%	732 1617 900 126662 86456 17842	382 26 9 3749 0 0	1114 1643 909 130411 86456 17842	2% 1% 3% 0% 0%
Mackerel Mackerel Mackerel Mackerel Total Sprat Sprat Sprat	MAC MAC MAC MAC SPR SPR SPR	SWE FRA FRA DNK DNK DNK	PEL_TRAW PEL_TRAW TR2 PEL_TRAW TR3 none	595 798 114873 104101 23035 936	0 1170	0% 0% 1% 0% 0% 0%	420 31 917 127149 102177 16625	0 1532	0% 0% 1% 0% 0% 0%	1180 4815 986 137965 53089 13865 129	1147 78 27 8545	49% 2% 3% 6% 0% 0% 0%	732 1617 900 126662 86456 17842 355	382 26 9 3749 0 0 0	1114 1643 909 130411 86456 17842 355	2% 1% 3% 0% 0%

Table A.3.2 North Sea || industrial and pelagic fisheries - continued

Table A.J.2 NOTU	i Jea	Innuistrie	ii allu pela	igit lishe	1163 - 00	Tunu	eu									
SPEC_NAME	SPECI	COUNTRY	REG_GEAR	2010	2010	2010	2011	2011	2011	2012	2012	2012	Avg	Avg	Avg	Avg
	ES			Landing	Discard	%DR	Landing	Discard	%DR	Landing	Discard	%DR	2010-	2010-	2010-	2010-
													2012	2012	2012	2012
													Landing	Discard	Catch	%DR
Sprat	SPR	NLD	PEL_TRAW	1720		0%	5288		0%	3667		0%	3558	0	3558	0%
Sprat	SPR	DEU	PEL_TRAW	2925		0%	3226		0%	471		0%	2207	0	2207	0%
Sprat	SPR	SWE	PEL_TRAW	1200		0%	1240		0%	2223		0%	1554	0	1554	0%
Sprat	SPR	SCO	PEL_TRAW	781		0%	1946		0%	651		0%	1126	0	1126	0%
Sprat	SPR	SCO	OTTER			0%	305		0%			0%	102	0	102	0%
Sprat	SPR	SCO	TR3	294		0%			0%			0%	98	0	98	0%
Sprat	SPR	ENG	PEL_TRAW	707		0%	326		0%	142		0%	392	0	392	0%
Sprat	SPR	NIR	PEL_TRAW	L		0%	540		0%			0%	180	0	180	0%
Sprat Total				135777		0%	131739		0%	74428	0	0%	113981	0	113981	0%
Norway pout	NOP	DNK	TR3	50778		0%	3862		0%	73		0%	18238	0	18238	0%
Norway pout	NOP	DNK	PEL_TRAW	20276		0%	181		0%	128		0%	6862	0	6862	0%
Norway pout	NOP	DNK	OTTER	207		0%	22		0%	15	5	25%	81	2	83	2%
Norway pout Total				71261		0%	4066		0%	217	5	2%	25181	2	25183	0%
Horse mackerels	JAX	NLD	TR1	72	28428	100%	94	1998	96%	188	0	0%	118	10142	10260	99%
Horse mackerels	JAX	NLD	PEL_TRAW	2351		0%	1990		0%	280	0	0%	1540	0	1540	0%
Horse mackerels	JAX	NLD	TR2	172	0	0%	237	330	58%	337	0	0%	249	110	359	31%
Horse mackerels	JAX	NLD	BT2	10	198	95%	11		0%	6		0%	9	66	75	88%
Horse mackerels	JAX	SCO	PEL_TRAW	646		0%	145		0%	154	0	0%	315	0	315	0%
Horse mackerels	JAX	DEU	PEL_TRAW	238		0%	96		0%	584	0	0%	306	0	306	0%
Horse mackerels	JAX	IRL	PEL_TRAW	14		0%	757		0%	25	0	0%	265	0	265	0%
Horse mackerels	JAX	NIR	PEL_TRAW	L		0%	36		0%	469	0	0%	168	0	168	0%
Horse mackerels To	tal			3503	28626	89%	3366	2328	41%	2043	0	0%	2971	10318	13289	78%
Atlantic redfishes	RED	FRA	TR1	203	2357	92%	155	260	63%	187		0%	181	872	1054	83%
Atlantic redfishes	RED	SCO	TR1	227		0%	98		0%	105		0%	143	0	143	0%
Atlantic redfishes To	otal			430	2357	85%	253	260	51%	292		0%	325	872	1197	73%
Boarfishes	BOR	SCO	OTTER			0%			0%	1745		0%	582	0	582	0%
Boarfishes Total	·					0%			0%	1745		0%	582	0	582	0%
Blue whiting	WHB	DNK	PEL_TRAW	81		0%	90		0%	125	0	0%	98	0	98	0%
Blue whiting	WHB	NLD	PEL_TRAW	L		0%	1		0%	150	31	17%	50	10	61	17%
Blue whiting Total				81		0%	91		0%	275	31	10%	149	10	159	6%
Grand Total				666053	32153	5%	619045	4120	1%	537654	9937	2%	607584	15403	622987	2%

Table A.3.3 Skagerrak || demersal fisheries: landings and discards per species and year and area (tonnes). Table sorted in descending order on average catch 2010-2012. Only country and gear combination where average 2010-2012 catch larger than 50 t.

SPEC_NAME	SPECI	COUNTRY	REG_GEAR	2010	2010	2010	2011	2011	2011	2012	2012	2012	Avg	Avg	Avg	Avg
	ES			Landing	Discard	%DR	Landing	Discard	%DR	Landing	Discard	%DR	2010-	2010-	2010-	2010-
													2012	2012	2012	2012
													Landing	Discard	Catch	%DR
Plaice	PLE	DNK	TR1	5364	534	9%	5289	665	11%	5080	807	14%	5244	669	5913	11%
Plaice	PLE	DNK	TR2	562	38	6%	881	85	9%	840	121	13%	761	81	842	10%
Plaice	PLE	DNK	GN1	227	3	1%	487	4	1%	260	15	5%	324	7	332	2%
Plaice	PLE	DNK	BT1	174		0%	204		0%	432		0%	270	0	270	0%
Plaice	PLE	DNK	GT1	162	2	1%	233	0	0%	149	5	3%	181	2	184	1%
Plaice	PLE	NLD	BT2	567		0%	4		0%			0%	190	0	190	0%
Plaice	PLE	NLD	BT1	540		0%	1		0%			0%	180	0	180	0%
Plaice	PLE	NLD	TR1	395	44	10%			0%			0%	132	15	146	10%
Plaice	PLE	SWE	TR2	109	91	45%	152	79	34%	137	42	24%	133	71	203	35%
Plaice Total				8100	712	8%	7251	833	10%	6897	990	13%	7416	845	8261	10%
Cod	COD	DNK	TR2	984	962	49%	973	1370	58%	1021	1121	52%	993	1151	2144	54%
Cod	COD	DNK	TR1	1083	511	32%	937	380	29%	1119	313	22%	1046	401	1448	28%
Cod	COD	DNK	GN1	749	15	2%	660	13	2%	519	10	2%	643	13	655	2%
Cod	COD	DNK	OTTER	56	24	30%	48	5	10%	70	3	4%	58	11	69	16%
Cod	COD	DNK	GT1	54	2	3%	48	1	3%	52	1	2%	51	1	53	3%
Cod	COD	SWE	TR2	213	126	37%	261	87	25%	233	222	49%	235	145	380	38%
Cod	COD	SWE	OTTER	169	13	7%	148	58	28%	136	56	29%	151	42	193	22%
Cod	COD	DEU	TR1	55	25	31%	59	11	16%	248	32	11%	121	23	143	16%
Cod Total				3363	1679	33%	3135	1926	38%	3397	1758	34%	3298	1788	5086	35%
Norway lobster	NEP	DNK	TR2	1860	1295	41%	1769	1025	37%	1494	912	38%	1708	1077	2785	39%
, Norway lobster	NEP	DNK	TR1	104	197	66%	18	70	80%	11	65	86%	44	111	155	72%
, Norway lobster	NEP	SWE	TR2	514	390	43%	390	351	47%	535	618	54%	480	453	933	49%
Norway lobster	NEP	SWE	POTS	135		0%	92		0%	177		0%	135	0	135	0%
Norway lobster Tot	al	ļ		2612	1882	42%	2269	1446	39%	2218	1594	42%	2366	1641	4007	41%
Saithe	POK	DNK	TR2	2538	79	3%	1645	290	15%	1239	40	3%	1807	137	1944	7%
Saithe	РОК	DNK	TR1	870	17	2%	128	31	19%	143	5	4%	380	18	398	4%
Saithe	РОК	DNK	OTTER	191	18	8%	150	5	3%	150	2	2%	163	8	172	5%
Saithe	РОК	SWE	OTTER	333	351	51%	347	18	5%	254	1	1%	311	124	435	28%
Saithe	РОК	SWE	TR2	311	94	23%	109	0	0%	92	59	39%	171	51	222	23%
Saithe	РОК	DEU	TR1	375	6	1%	700	35	5%	330	5	2%	468	15	483	3%
Saithe	РОК	DEU	PEL TRAW	/L		0%	236		0%	54		0%	96	0	96	0%
Saithe Total		ļ		4617	565	11%	3314	379	10%	2263	113	5%	3398	352	3750	9%
Northern prawn	PRA	SWE	OTTER	1475	58	4%	1486	167	10%	1287	268	17%	1416	164	1581	10%
Northern prawn	PRA	DNK	OTTER	1119	58	5%	1163	104	8%	1097	137	11%	1127	99	1226	8%
Northern prawn	PRA	DNK	none	3		0%	105		0%	129		0%	79	0	79	0%
Northern prawn To	tal			2598	115	4%	2754	271	9%	2514	405	14%	2622	264	2886	9%
Haddock	HAD	DNK	TR1	852	199	19%	1188	236	17%	1128	100	8%	1056	178	1234	14%
Haddock	HAD	DNK	TR2	290	311	52%	498	868	64%	816	508	38%	534	562	1097	51%
Haddock	HAD	SWE	TR2	92	174	66%	119	20	14%	145	47	24%	119	80	199	40%
Haddock	HAD	SWE	OTTER	11	18	63%	16	94	86%	52	11	18%	26	41	67	61%
Haddock	HAD	DEU	TR1	67	13	17%	103	12	10%	180	12	6%	116	12	129	10%
Haddock Total				1312	716	35%	1923	1229	39%	2320	678	23%	1852	874	2726	32%
Dab	DAB	DNK	TR1	300	136	31%	359	475	57%	386	325	46%	349	312	661	47%
Dab	DAB	DNK	TR2	39	46	54%	60	33	36%	131	96	42%	77	58	135	43%
Dab	DAB	SWE	TR2	1	43	97%	1	51	98%	1	68	99%	1	54	55	98%
Dab Total				341	225	40%	421	559	57%	518	489	49%	426	424	851	50%
Hake	HKE	DNK	TR2	189	67	26%	263	16	6%	199	77	28%	217	53	270	20%
Hake	нке	DNK	TR1	88	16	16%	90	2	2%	76	20	21%	85	13	97	13%
Hake Total		ļ		277	83	23%	353	18	5%	275	97	26%	301	66	367	18%
Lemon sole	LEM	DNK	TR1	187	28	13%	121	11	8%	250	21	8%	186	20	206	10%
Lemon sole	LEM	DNK	TR2	51	12	19%	75	8	9%	153	14	9%	93	11	104	11%
Lemon sole Total				238	40	15%	196	19	9%	403	35	8%	279	31	310	10%
Whiting	WHG	DNK	TR2	25	215	90%	28	207	88%	22	100	82%	25	174	199	87%
Whiting	WHG	SWE	TR2	17	88	84%	9	22	72%	6	18	74%	11	43	54	80%
Whiting Total	•			42	303	88%	36	229	86%	28	118	81%	35	217	252	86%
Anglerfish	ANF	DNK	TR2	175	0	0%	192	0	0%	199	0	0%	189	0	189	0%
Anglerfish Total			•	175	0	0%	192	0	0%	199	0	0%	189	0	189	0%
Roundnose grenadi	eRNG	DNK	TR2	0	0	77%	0	387	100%	0	0	53%	0	129	130	100%
, .		•	•													

Table A.3.3 Skagerrak [] demersal fisheries: con
--

Roundnose grenad	0	0	77%	0	387	100%	0	0	53%	0	129	130	100%			
Pollack	POL	DNK	GN1	150	0	0%	81	2	3%	81	0	0%	104	1	105	1%
Pollack Total	150	0	0%	81	2	3%	81	0	0%	104	1	105	1%			
Ling	LIN	DNK	TR2	33	45	58%	48	0	0%	51	3	6%	44	16	60	27%
Ling Total	33	45	58%	48	0	0%	51	3	6%	44	16	60	27%			
Grand Total	23857	6367	21%	21972	7298	25%	21165	6281	23%	22331	6649	28980	23%			

Table A.3.4 Skagerrak || industrial and pelagic fisheries: landings and discards per species and year and area (tonnes). Table sorted in descending order on average catch 2010-2012. Only country and gear combination where average 2010-2012 catch larger than 50 t.

SPEC_NAME	SPECI	COUNTRY	REG_GEAR	2010	2010	2010	2011	2011	2011	2012	2012	2012	Avg	Avg	Avg	Avg
	ES			Landing	Discard	%DR	Landing	Discard	%DR	Landing	Discard	%DR	2010-	2010-	2010-	2010-
													2012	2012	2012	2012
													Landing	Discard	Catch	%DR
Herring	HER	SWE	PEL_TRAW	15556		0%	6646	0	0%	12239		0%	11480	0	11480	0%
Herring	HER	SWE	PEL_SEINE	1844		0%	2711		0%	3610		0%	2722	0	2722	0%
Herring	HER	SWE	OTTER	0	8	97%	0	318	100%	135	1	1%	45	109	154	71%
Herring	HER	DEU	OTTER	160	13173	99%			0%			0%	53	4391	4444	99%
Herring	HER	DEU	PEL_TRAW	L		0%	54	0	0%	670		0%	241	0	241	0%
Herring	HER	DNK	PEL_TRAW	3291		0%	2415	0	0%	1610		0%	2438	0	2438	0%
Herring	HER	LTU	OTTER	485	0	0%			0%			0%	162	0	162	0%
Herring Total				21336	13181	38%	11827	318	3%	18263	1	0%	17142	4500	21642	21%
Sandeel	SAN	DNK	OTTER	7775		0%			0%	1232		0%	3002	0	3002	0%
Sandeel	SAN	DNK	PEL_TRAW	1322		0%			0%	185		0%	502	0	502	0%
Sandeel	SAN	SWE	OTTER	720		0%			0%			0%	240	0	240	0%
Sandeel Total				9817		0%			0%	1416		0%	3744	0	3744	0%
Sprat	SPR	DNK	PEL_TRAW	2522		0%	2605		0%	80		0%	1736	0	1736	0%
Sprat	SPR	DNK	TR3	426		0%	78		0%	8		0%	171	0	171	0%
Sprat	SPR	SWE	PEL_SEINE	1129		0%	1750		0%	1218		0%	1366	0	1366	0%
Sprat	SPR	DEU	PEL_TRAW	315		0%			0%			0%	105	0	105	0%
Sprat Total				4393		0%	4433		0%	1305		0%	3377	0	3377	0%
Norway pout	NOP	DNK	OTTER	0	296	100%	0	43	100%	19	55	74%	6	132	138	95%
Norway pout	NOP	DNK	PEL_TRAW	51		0%	2		0%	99		0%	51	0	51	0%
Norway pout	NOP	SWE	OTTER			0%	0	390	100%	0	96	100%	0	162	162	100%
Norway pout Total	-	-		51	296	85%	2	434	100%	118	151	56%	57	294	351	84%
Mackerel	MAC	SWE	GN1	65	0	0%	79	139	64%	82	21	21%	75	54	129	42%
Mackerel Total				65	0	0%	79	139	64%	82	21	21%	75	54	129	42%
Blue whiting	WHB	SWE	OTTER	0	223	100%	1	38	98%	2	118	99%	1	126	127	99%
Blue whiting Total				0	223	100%	1	38	98%	2	118	99%	1	126	127	99%
Grand Total				35662	13700	28%	16342	928	5%	21187	292	1%	24397	4973	29370	17%

Table A.3.5 Eastern Channel || demersal fisheries: landings and discards per species and year and area (tonnes). Table sorted in descending order on average catch 2010-2012. Only country and gear combination where average 2010-2012 catch larger than 50 t.

SPEC_NAME	SPECI	COUNTRY	REG_GEAR	2010	2010	2010	2011	2011	2011	2012	2012	2012	Avg	Avg	Avg	Avg
	ES			Landing	Discard	%DR	Landing	Discard	%DR	Landing	Discard	%DR	2010-	2010- 2	2010-	2010-
													2012	2012	2012	2012
													Landing	Discard	Catch	%DR
Whiting	WHG	FRA	TR2	4729		0%	5571		0%	2465	34	1%	4255	11	4266	0%
Whiting	WHG	FRA	PEL_TRAW	44	279	86%	24		0%	71		0%	46	93	139	67%
Whiting	WHG	ENG	TR2	128	112	46%	116	13	10%	196	525	73%	147	216	363	60%
Whiting	WHG	NLD	TR2	257		0%	279		0%	455		0%	330	0	330	0%
Whiting	WHG	SCO	TR2	93	80	46%	132	8	6%	47	358	88%	91	149	239	62%
Whiting	WHG	BEL	BT2	67	22	25%	58	12	17%	47	28	38%	57	21	78	27%
Whiting Total		1		5319	493	8%	6179	33	1%	3281	945	22%	4926	490	5417	9%
Plaice	PLE	FRA	TR2	923		0%	1075		0%	784	8	1%	927	3	930	0%
Plaice	PLE	FRA	GT1	173	85	33%	363	36	9%	336	30	8%	291	50	341	15%
Plaice	PLE	FRA	BT2	203	46	19%	242	94	28%	255	3	1%	233	48	281	17%
Plaice	PLE	FRA	TR1	4	213	98%	9	2	22%	5		0%	6	72	78	93%
Plaice	PLE	BEL	BT2	1098	280	20%	1042	406	28%	979	7	1%	1040	231	1271	18%
Plaice	PLE	BEL	TR1	0	161	100%	0	0	49%	0		0%	0	54	54	99%
Plaice	PLE	ENG	BT2	215	13	6%	168	32	16%	215	9	4%	199	18	217	8%
Plaice	PLE	NLD	TR2	55		0%	60		0%	40		0%	52	0	52	0%
Plaice Total		1		2671	799	23%	2960	571	16%	2614	57	2%	2748	476	3224	15%
Sole	SOL	FRA	GT1	585	17	3%	1166	13	1%	1271	2	0%	1007	11	1018	1%
Sole	SOL	FRA	TR2	360		0%	444		0%	416	0	0%	407	0	407	0%
Sole	SOL	FRA	BT2	186	16	8%	182	10	5%	199	0	0%	189	9	198	5%
Sole	SOL	BEL	BT2	1254	119	9%	1168	66	5%	887	0	0%	1103	62	1165	5%
Sole	SOL	ENG	BT2	146	3	2%	95	2	2%	107	0	0%	116	2	118	2%
Sole Total				2532	155	6%	3054	92	3%	2881	2	0%	2822	83	2905	3%
Dab	DAB	FRA	TR2	601		0%	749		0%	559	30	5%	636	10	646	2%
Dab	DAB	FRA	GT1	52	1514	97%	97	78	45%	110		0%	86	531	617	86%
Dab	DAB	BEL	BT2	146	83	36%	154	139	47%	96	147	60%	132	123	255	48%
Dab	DAB	NLD	TR2	88		0%	125		0%	116		0%	110	0	110	0%
Dab	DAB	ENG	TR2	25	30	55%	27	59	69%	43	44	51%	32	45	76	59%
Dab	DAB	SCO	TR2	11	10	46%	33	70	68%	14	37	72%	19	39	58	67%
Dab Total				923	1638	64%	1185	347	23%	938	258	22%	1015	748	1763	42%
Cod	COD	FRA	TR2	664		0%	631		0%	496		0%	597	0	597	0%
Cod	COD	FRA	GI1	151	4	3%	139	392	/4%	133	19	13%	141	139	280	50%
Cod Total		251	0.70	815	4	1%	//0	392	34%	630	19	3%	/38	139	8//	16%
Lemon sole	LEIM	BEL	BIZ	98	13	12%	145	45	24%	160	83	34%	135	4/	182	26%
Lemon sole	LEIVI	FRA	TRZ	43	4.2	0%	196	45	0%	107	0	0%	115	0	115	0%
Lemon sole Total	TUD	DEL	DTO	141	13	8%	341	45	12%	267	83	24%	250	47	297	16%
Turbot	TUR	BEL	BIZ CT1	99	0	0%	119	1	1%	109	1	1%	109	1	109	1%
Turbot	TUR	FKA	GII	120	35	210/	47	1	0%	52	0	0%	42	12	102	22%
		ED A	трр	120	35	21%	100	1	1%	160	1	1%	151	12	103	7%
Pollack	POL	FKA	TRZ	116		0%	158		0%	84		0%	119	0	119	0%
	D 11	DEL	DTO	116	0	0%	158	2	0%	84	4	0%	119	0	119	0%
Brill Tatal	BLL	BEL	ыг	132	0	0%	119	2	1%	100	1	10/	117	1	118	1%
		DEI	DTO	132	0	120/	119	2	1%	100	1	1%	11/	1	118	1%
	ANF	BEL	ыг	125	1/	12%	92	6	/%	56	1/	24%	91	14	105	13%
Angierrish Total				125	1/	12%	92	6	/%	56	1/	24%	91	14	105	13%
Grand Total				12900	3154	20%	15023	1489	9%	11010	1384	11%	12978	2009	14987	13%

Table A.3.6 Eastern Channel || pelagic fisheries: landings and discards per species and year and area (tonnes). Table sorted in descending order on average catch 2010-2012. Only country and gear combination where average 2010-2012 catch larger than 50 t.

SPEC_NAME	SPECI	COUNTRY	REG_GEAR	2010	2010	2010	2011	2011	2011	2012	2012	2012	Avg	Avg	Avg	Avg
	ES			Landing	Discard	%DR	Landing	Discard	%DR	Landing	Discard	%DR	2010-	2010- 2	2010-	2010-
													2012	2012	2012	2012
													Landing	Discard	Catch	%DR
Herring	HER	NLD	PEL_TRAW	9955	19	0%	9724	91	1%	13296	606	4%	10992	239	11230	2%
Herring	HER	DEU	PEL_TRAW	5171	10	0%	4984	50	1%	7265	0	0%	5807	20	5827	0%
Herring	HER	FRA	PEL_TRAW	1219	3	0%	844	6	1%	8925	255	3%	3663	88	3751	2%
Herring	HER	FRA	TR2	575		0%	653		0%	692		0%	640	0	640	0%
Herring	HER	ENG	PEL_TRAW	1727	3	0%	32	0	1%	3836	123	3%	1865	42	1907	2%
Herring	HER	ENG	OTTER			0%	2029		0%			0%	676	0	676	0%
Herring	HER	DNK	PEL_TRAW	/L		0%			0%	325	10	3%	108	3	112	3%
Herring Total		18648	35	0%	18266	148	1%	34339	994	3%	23751	392	24143	2%		
Horse mackerels	JAX	NLD	PEL_TRAW	15612	0	0%	13873	110	1%	12264	43	0%	13916	51	13967	0%
Horse mackerels	JAX	NLD	TR2	110		0%	144		0%	219		0%	158	0	158	0%
Horse mackerels	JAX	DEU	PEL_TRAW	3557	0	0%	3366	1	0%	4865	22	0%	3929	8	3937	0%
Horse mackerels	JAX	ENG	PEL_TRAW	1869	0	0%	1668	17	1%	877	2	0%	1472	6	1478	0%
Horse mackerels	JAX	DNK	PEL_TRAW	/L		0%	89	0	0%	1060	3	0%	383	1	384	0%
Horse mackerels To	tal			21148	0	0%	19140	127	1%	19285	71	0%	19857	66	19923	0%
Mackerel	MAC	FRA	PEL_TRAW	1347	30134	96%	1806	1048	37%	2230	1966	47%	1794	11049	12844	86%
Mackerel	MAC	FRA	TR2	2388		0%	4425		0%	2338	0	0%	3050	0	3050	0%
Mackerel	MAC	FRA	OTTER	116		0%	1292		0%	93		0%	500	0	500	0%
Mackerel	MAC	NLD	PEL_TRAW	37	494	93%	22	16	42%	39	6	13%	33	172	205	84%
Mackerel	MAC	NLD	TR2	58		0%	42		0%	93		0%	64	0	64	0%
Mackerel	MAC	ENG	PEL_TRAW	5	271	98%	8	4	32%			0%	4	91	96	95%
Mackerel Total				3950	30898	89%	7595	1068	12%	4793	1972	29%	5446	11313	16759	68%
Grand Total		43746	30933	41%	45001	1343	3%	58417	3037	5%	49054	11771	60825	19%		